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Abstract

Reinforcement Learning (RL) is a branch of machine learning and is a powerful approach to teach

a machine that behaves like an expert. The machine under RL improves its policy (a.k.a controller)

through a sequence of trials and errors. It means it can learn from both successes and failures. As

a result, RL is able to apply in a wide range of applications such as robotics, networking control,

resource management, process control, and traffic control. In recent years, RL has achieved re-

markable success due to the growing adoption of deep learning techniques and the rapid growth

of computing power. The ability of AI learned by RL has surpassed the human brain in some do-

mains such as computer games, card games, and board games, and is expected to reach human

intelligence in the near future. However, in order to achieve the expectation, RL needs to tackle

several challenges in advance.

The first challenge studied in this dissertation is reported on flat RL algorithms such as DQN,

DRQN and Actor Critic. These algorithms often have trouble learning and are even data-efficient

with respect to domains having hierarchical structures, e.g. those consisting of multiple subdo-

mains. Hierarchical Reinforcement Learning (HRL) is a principled approach that can tackle such

challenging tasks. Basically, HRL splits a domain into a hierarchy of subdomains and let an agent

(e.g. a learned agent) solve subdomains instead of the domain. As a result, the framework of a

HRL algorithm is modified to be able to suitable with the hierarchy of subdomains.

In contrast, the second challenge relies on the fact that many real-world domains usually have

only partial observability in which state measurements are often imperfect and partially observ-

able. For example, a robot only knows a part of the environment due to the limitation of its sensors

or an autonomous car uses a limited information from sensors to take the actions (e.g. brake, ac-

celerate, turn left, turn right). Taking an action under partial observability is a challenge of a RL
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problem.

In this dissertation, we propose hierarchical Deep Recurrent Q-learning algorithms

(hDRQNs) in order to handle hierarchical domains in either full observation or partial obser-

vation. Particularly, we develop hDRQNv1 algorithm which learns a framework of hierarchical

controllers to adapt with hierarchical domains. The framework is constructed by two policies of

hierarchy: meta-controller and sub-controller. Meta-controller is an upper policy which plans the

agent to complete a sequence of subdomains. Meanwhile, sub-controller performs primitive ac-

tions to let the agent complete a subdomain. The policies are formed by deep neural networks

such as convolutional neural networks and multilayer perception, which are expected to represent

highly complex problems. In addition, the policies integrated recurrent neural layers are expected

to overcome the challenges under partial observability. hDRQNv2 is another proposed algorithm

which is an improvement of hDRQNv1. It changes the way RNNs integrated into the framework,

thus, is expected to have better performance.

Both algorithms are evaluated using various challenging hierarchical POMDPs such as multi-

ple goals in gridworld, multiple goals in four-rooms and Montezuma’s Revenge. Especially, Mon-

tezuma’s Revenge is a hard game in Atari 2600 which is reported a score of zero when learning

using DQN. It is hard due to the hierarchy of subdomains in the game. To the best of our knowl-

edge, this research is the first to study Montezuma’s Revenge under partial observability. We com-

pare our proposed algorithms with some baseline algorithms such as flat RL algorithms (DQN,

DRQN) and a HRL algorithm (hDQN). The comparison is performed based on some metrics such

as average reward, number of steps and success ratio. In addition, hDRQNs algorithms are further

investigated under various parameter configurations to validate its performance in terms of reward

and number of steps. From the experimental results, the proposed algorithms are capable to learn

in hierarchical domains under partial observability. Under partial observability, the proposed al-

gorithms outperform several existing state-of-the-art algorithms including flat RL algorithm and

HRL algorithm.
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Chapter 1
Introduction

1.1 Overview

Reinforcement Learning (RL) [3] is an area of machine learning concerned with how software

agents take actions in an environment so as to maximize cumulative reward [4]. The action selec-

tion is modeled as a map called policy (a.k.a controller) which is improved through a sequence of

trials and errors.

Environment

Agent

A
ct
io
n

Interpreter

Reward

State

Figure 1.1: A reinforcement learning problem. An agent interacts with an environment by taking
an action. The environment transits to next state. The agent observes the state and a reward from
the environment

RL, supervised learning, and unsupervised learning are subclasses of machine learning under

the technical perspective. Particularly, supervised learning provides a full set of labeled dataset for

training whose each sample is tagged with the answer. Meanwhile, unsupervised learning provides

1
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a dataset without answers tagged. Looking for the answers is the role of unsupervised learning.

RL is a hybrid approach in which we do not provide the dataset of correct samples, but we provide

a method to quantify its performance in the form of a reward signal. From a practical perspective,

RL is one of the four major areas of machine learning which includes regression, classification,

clustering, and reinforcement learning. Regression algorithms can predict results related to quan-

tity, amount such as the temperature tomorrow, the energy cost next week or the number of new

users will visit next month. Classification algorithms focus on predicting which category the data

should belong to. For example, identifying an email is a spam email or a normal email, identifying

a dog appear in an image or not, or categorizing news stories as finance, weather, entertainment,

sports. . . Clustering algorithms try to group data based on their similarity on some properties. For

example, grouping customers who have the same favorite product, grouping documents which

have the same topic or grouping visitors who like the same movie. Meanwhile, reinforcement

learning algorithms focus on learning an agent so that it can take a sequence of appropriate actions

in an environment to maximize cumulative reward. For example, should an autonomous car break

or accelerate when the pedestrian is ahead? Or should a home agent rise or lower the tempera-

ture of a room when the human is inside? Due to its characteristic, RL is able to apply in a wide

range of applications. Figure 1.2 shows many application areas published on IEEE magazines [1],

such as robotics [5] [6] [7] [8], networking [9] [10] [11], resource management [12] [13], and

finance [14] [15] [16].

Almost RL domains (a.k.a problems, tasks) are formalized as Markov decision process

(MDP) which is a sequence of states, actions, next states, transition functions, and rewards. How-

ever, MDP is not enough power to represent the domains which consist of multiple subdomains. As

a result, hierarchical reinforcement learning (HRL) [17] was proposed to tackle this problem.

HRL relies on a theory of semi-Markov decision process (SMDP) which is an extension of MDP

to deal with hierarchical domains. HRL decomposes a RL domain into a hierarchy of subdomains,

each of which can itself be a RL domain. Identical subdomains can be gathered into one group and

are controlled by the same policy. As a result, hierarchical decomposition represents the domain

in a compact form and reduces the computational complexity. Various approaches to decompose

the RL problem have been proposed such as options [17], HAMs [18] [19], MAXQ [20], Bayesian
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Figure 1.2: Application areas of reinforcement learning [1]

HRL [21–23] and some other advanced techniques [24].

In another aspect, most of the studies rely on an assumption of full observability, where a

learning agent can observe the environment states fully. In other words, the environment is repre-

sented as a MDP. This assumption does not reflect the nature of real-world applications in which

the agent only observes partial information of the environment states. Therefore, the environment,

in this case, is represented as a partial observation Markov decision process (POMDP). In order

for the agent to learn in such a POMDP environment, more advanced techniques are required to

obtain good prediction over environment responses such as maintaining a belief distribution over

unobservable states; or alternatively using a recurrent neural network (RNN) [25] to summarize

an observable history.

1.2 Motivation

In recent years, RL has achieved remarkable success due to the growing adoption of deep learn-

ing techniques and the rapid growth of computing power. The ability of AI learned by RL has sur-

passed the human brain in some domains such as computer games [26] [27] [28], card games [29]
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and board games [30] [31], and is expected to reach human intelligence in the near future.

Figure 1.3: Applications of deep reinforcement learning

In deep reinforcement learning, deep learning techniques significantly affect due to their big

advantages including powerful data representation, efficiently parameters updating, and stable

learning.

Powerful data representation Before the era of deep learning, the RL uses shallow networks

such as tabular, linear function or radial basis function, to store the Q values or represent the policy

[32]. The shallow networks contained several or a hundred parameters, are not enough power to

represent highly non-linear domains. After the deep learning comes, it makes a big change not

only for reinforcement learning area but also for all areas of machine learning. A deep neural

network consists of multiple hidden layers such as convolutional layer (CONV), fully connected

layer (FC) and rectified linear unit layer (ReLU). Each layer connects with other layers to form

a complex neural network of a million parameters. The complexity of deep neural networks can

represent highly nonlinear domains.

Stable learning Before DQN was proposed, using a nonlinear function approximator to rep-

resent Q values such as neural network, is unstable and diverge. This instability has two causes:

the correlations present in the sequence of observations and the correlations between the Q values
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and the target Q values. Two ideas from DQN was proposed to make the learning process stable.

First, DQN uses a biologically inspired mechanism termed experience replay that randomizes over

the data, thereby removing correlations in the observation sequence and smoothing over changes

in the data distribution. Second, DQN used an iterative update that adjusts the Q values towards

target Q values that are only periodically updated, thereby reducing correlations with the target.

In the practical implementation, target values are generated by a separate neural network, called

target Q network, which is a copy of the Q network. The target Q network is periodically updated

and is decoupled with the updating of Q network.

Efficiently parameters updating The parameters of neural networks can be updated using a

batch of data samples which expected to reduce the variance in the parameter updates. In addition,

most of the deep learning frameworks allow employing many optimization algorithms such as

AdaGrad [33], Adam [34] and RMSProp [35], which give us many choices to train the networks.

Figure 1.4: Deep Q Network (DQN) is a combination of convolutional layers, fully connected
layers, ReLU layers,. . .

Traditional HRL can also combine with deep neural networks in different ways to improve the

performance on hierarchical tasks [36] [37] [38] [39] [40] [41] [42]. Bacon et al. [37] proposed an

option-critic architecture, which has a fixed number of intra-options, each followed by a “deep”
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policy. At each time step, only one option is activated and is selected by another policy, which

is called “policy over options”. DeepMind lab [40] also proposed a deep hierarchical framework

inspired by a classical framework called feudal reinforcement learning [43]. Similarly, Kulkarni

et al. [44] proposed a deep hierarchical framework of two levels in which the high-level controller

produces a subgoal and the low-level controller performs primitive actions to obtain the subgoal.

This framework is useful to solve a problem with multiple subgoals such as Montezuma’s Revenge

[26] and games in Mazebase [45]. Other studies have tried to tackle more challenging problems in

HRL such as discovering subgoals [46] and adaptively finding a number of options [47].

1.3 Problem Statement

Although state-of-the-art deep reinforcement learning algorithms achieve remarkable success in

the fields of computer games, robotics, . . . RL needs to tackle some challenges which are addressed

as follows:

• Challenges in solving domains having hierarchical structures The first challenge studied

in this dissertation is reported on flat RL algorithms such as DQN, DRQN and Actor Critic.

These algorithms often have trouble learning and are even data-efficient with respect to

domains having hierarchical structures, e.g. those consisting of multiple subdomains. Figure

1.5 shows the performance of DQN on a series of Atari 2600. On this game series, DQN

reports a score of zero on the Montezuma’s Revenge game which is recognized as a domain

having hierarchical structures. The first screen of this game is shown in Figure 1.5b. The

agent in the middle of the screen needs to get the key (in the left of the screen) to open the

doors (left door or right door). The game only has score if it can pass the doors or can get

the key. However, in order to reach the key, the agent needs to do a lot of steps which lead

to a long and reward-delayed episode.

• Challenges when solving domains under partial observability The second challenge re-

lies on the fact that many real-world domains usually have only partial observability in

which state measurements are often imperfect and partially observable. For example, a robot

only knows a part of the environment due to the limitation of its sensors or an autonomous
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(a) DQN reports a score of zero on Montezuma’s
Revenge (b) Montezuma’s Revenge in ATARI 2600

Figure 1.5: Flat DRL algorithms fail to solve Montezuma’s Revenge which is a hierarchical do-
main

car uses a limited information from sensors to take the actions (e.g. brake, accelerate, turn

left, turn right).

In a summarized sentence, the challenges under our investigation are: “how to solve domains

having hierarchical structures under the partial observability and how to strengthen proposed

frameworks by utilizing the power of state-of-the-art deep learning methods”.

1.4 Proposed Concept

In this dissertation, we want to propose deep HRL algorithms for solving hierarchical tasks

under partial observability. The concept of the proposed algorithms is shown in Figure 1.7. In

this concept, a planner will plan the agent to complete subdomains until the whole domain is

completed. In order to predict the subgoal, the planner only receives a part of an environment

(around the agent) instead of a whole environment. After receiving a part of the environment,

the planer predicts a subgoal which the agent should obtain to complete the subdomain. After
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RUN?

JUMP?

GO DOWN?

Figure 1.6: The agent is hard to take an action under partial observability

selecting the subgoal, the agent controlled by a RL policy will interact with the environment by

receiving an observation, receiving a reward value, returning an action, and transiting to next state.

The controller is executed until the subgoal is obtained (E.g. the subdomain is completed). Then,

the agent is controlled by the planner and is planned to complete another subdomain. A sequence

of operations is repeated until the agent can complete the whole domain. In this proposed concept,

we want to develop the controllers utilizing the power of deep neural networks. Especially, the

controllers can give the predictions from incomplete states rather than full states. In summary,

our proposed algorithms include three steps: (1) the planner select the subdomain which the agent

should complete first, (2) the agent follows the policy to complete a subdomain and (3) the agent

repeats (1) and (2) until completing the whole domain.

1.5 Key Contributions

In order to solve domains having hierarchical structures, we utilize a hierarchical reinforcement

learning algorithm called hierarchical deep Q-learning algorithm [44]. This algorithm considers

a domain is a hierarchy of subdomains and let an agent (e.g. a learned agent) solve subdomains

instead of the domain. The algorithm learns a framework consisting of two controllers: a meta-

controller and a controller. The meta-controller selects a subgoal equivalent to a subdomain and

the controller performs primitive actions to obtain the subgoals. Both controllers are built based

on DQN networks whose input is four contiguous full images. To deal with the partial observ-

ability, we propose frameworks which controllers are developed based on DRQNs (deep recurrent
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Figure 1.7: The concept of our proposed algorithms which use to solve hierarchical domain under
partial observability
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Q networks) instead of DQN. The RNNs in DRQNs have ability to construct internal state from

incomplete states, thus, is expected to work in domains of partial observability.

Particularly, we develop a deep HRL algorithm for POMDP problems inspired by the deep

HRL framework [44]. The agent in this framework makes decisions through a hierarchical pol-

icy of two levels. The upper policy determines a subgoal to be achieved, while the lower policy

performs primitive actions to achieve the selected subgoal. To learn in POMDP, we represent all

policies using RNNs. The RNN of lower-level policies constructs an internal state to remember

the whole states observed during the course of interaction with the environment. The upper policy

is a RNN to encode a sequence of observations during the execution of the selected subgoal.

We highlight our contributions as follows. We develop hierarchical Deep Recurrent Q-learning

algorithms (hDRQNs) in order to handle hierarchical domains in either full observability or par-

tial observability. Particularly, we first develop hDRQNv1 algorithm which learns a framework

of hierarchical controllers to adapt with hierarchical domains. The framework is constructed by

two policies of hierarchy: meta-controller and sub-controller. Meta-controller is the upper policy

which plans the agent to complete a sequence of subdomains. Meanwhile, sub-controller is the

lower controller which performs primitive actions to let the agent complete subdomains. In ad-

dition, the policies are formed by deep neural networks such as convolutional neural networks

and multilayer perceptron, which are expected to represent highly nonlinear domains. Especially,

the policies integrated recurrent neural layers are expected to overcome the challenges under par-

tial observability. Second, hDRQNv2 is another proposed algorithm which is an improvement of

hDRQNv1. It changes the way RNNs integrated into the framework, thus, is expected to have

better performance. To the best of our knowledge, this dissertation is the first study which learns

Montezuma’s Revenge under partial observability.

In order to demonstrate the efficiency of our proposed algorithms, we compare them with

some baseline algorithms such as flat algorithms (DQN, DRQN) and HRL algorithm (hDQN).

Both algorithms are evaluated using three challenging hierarchical domains: multiple goals in

gridworld, multiple goals in four-rooms and Montezuma’s Revenge. Both domains are tested under

full observability and partial observability as well. Especially, Montezuma’s Revenge is a hard

game in Atari 2600 which is reported a score of zero when learning using DQN. It is hard due
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to the hierarchy of subdomains in the game. The comparison is performed based on some metrics

such as average reward, the number of steps and success ratio. In addition, hDRQNs algorithms are

further investigated under various parameter configurations to validate its performance in terms of

reward and number of steps. From the experimental results, the proposed algorithms are capable to

learn in hierarchical domains under partial observability. Under partial observability, the proposed

algorithms outperform existing state-of-the-art algorithms including flat RL algorithms and HRL

algorithms.

1.6 Dissertation Organization

The dissertation is organized into chapters as follows:

• Chapter 1: Introduction. Chapter 1 provides a brief introduction to the context of our

proposed algorithms. The chapter further describes several challenges in the area of rein-

forcement learning and the limitations of current algorithms. Finally, we briefly address our

proposed algorithms and highlight the contributions at the end of the chapter.

• Chapter 2: Background and Related Works. Chapter 2 provides the background theo-

ries behind our proposed algorithms. They include the theory about Markov decision pro-

cess, partially observable Markov decision process, semi-Markov decision process, and deep

learning techniques. In addition, we also briefly introduce some remarkable studies of hier-

archical deep reinforcement learning algorithm and reinforcement learning algorithm under

partial observability.

• Chapter 3: Proposed Methodology. Chapter 3 presents our proposed algorithms called

hierarchical deep recurrent Q learning (hDRQNs). The proposed algorithm can solve do-

mains having hierarchical structures under partial observability. We explain the algorithms

from the overall of proposed frameworks to the detail of components. Finally, we summarize

the proposed algorithms in form of pseudo-code at the end of the chapter.

• Chapter 4: Experimental Results and Discussions. Chapter 4 describes domains which

are used to evaluate our algorithms, provides implementation details of our proposed algo-
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rithms: parameters, programming language. The performance of algorithms is compared to

state-of-the-art algorithms to prove the efficiency of hDRQNs algorithms.

• Chapter 5: Conclusion and Future Works. Chapter 5 concludes the dissertation with some

discussions of limitations and also provides future works which can extend from current

works.



Chapter 2
Background and Related Works

In this section, we briefly review all underlying theories that the content of this dissertation relies

on. We first present the theories behind reinforcement learning and its extensions to deal with

hierarchical domains and partially observed domains. Second, we briefly review the techniques of

deep neural networks. Finally, some state-of-the-art deep reinforcement learning algorithms are

introduced.

2.1 Reinforcement Learning Problem

Reinforcement Learning (RL) as described in [3], is a learning framework where an agent inter-

acts with the environment through a sequence of trials and errors. In contrast with other machine

learning methods, the agent is not specified the proper actions to take. Instead, the agent explores

the environment to achieve the maximum amount of future rewards. Therefore, this approach

slightly differs from supervised learning and unsupervised learning. Generally, RL is concerned

with choosing a sequence of actions that maximizes cumulated discounted reward. Thus, it is sim-

ilar to a Markov Decision Process, or MDP. In this dissertation, we focus on MDPs in which time

is modeled as a sequence of discrete units called time steps. The introduction of MDP is defined

as follows:

2.1.1 Markov Decision Process (MDP)

A discrete MDP models a sequence of decisions of a learning agent interacting with an envi-

ronment at some discrete time scale, t = 1, 2, . . . Formally, an MDP consists of a tuple of

five elements {S,A,P, r, γ}, where S is a discrete state space, A is a discrete action space,

P(st+1, st, at) = p(st+1|st, at) is a transition function that measures the probability of obtaining

13
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a next state st+1 given a current state-action pair (st, at), r (st, at) defines an immediate reward

achieved at each state-action pair, and γ ∈ (0, 1) denotes a discount factor. MDP relies on the

Markov property that the next state only depends on the current state-action pair:

p(st+1|{s1, a1, s2, a2, ..., st, at}) = p(st+1|st, at). (2.1)

A policy of a RL algorithm is denoted by π, which is the probability of taking an action a given a

state s:

π = P(a|s), (2.2)

and the goal of an RL algorithm is to find an optimal policy π∗ in order to maximize the expected

discounted reward as follows:

J(π) = E
[ ∞∑
t=0

γtr(st, at)

]
. (2.3)

Figure 2.1: A reinforcement learning problem is modeled as a Markov decision process

2.1.2 Reinforcement Learning Approaches

RL algorithms are classified into three approaches: value-based approach, policy-based approach

and actor-critic approach [32].

Value-based approach A typical value-based approach tries to obtain an optimal policy by finding

optimal value functions (V values) or action value function (Q values). The value of state s is

defined to be the expected future discounted reward which the agent can get if the agent starts in
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state s and follows the policy π. Formally, this can be written as

Vπ(s) = E
[ ∞∑
t=0

γtr(st, at)

]
. (2.4)

Equation 2.4 can be written in the recursive form which is the expected value of immediate reward

and the discounted value of the next state:

Vπ(s) = E[r(s, a) + γVπ(s′)]. (2.5)

Value function can be used to estimate the goodness of a certain state but we can only use it

for action selection if we know the transition function. In contrast to value function, action value

function (Q values) estimate the future discounted reward if the agent chooses action a at state s

and follows policy π:

Qπ(s, a) = E[r(s, a) + γVπ(s′)]. (2.6)

Note that E[Qπ(s, π(s))] = Vπ(s) so we can also write

Qπ(s, a) = E[r(s, a) + γQπ(s′, a′)], (2.7)

where a′ is action taken by following policy π. A policy π1 is better than policy π2 if Vπ1(s) ≥

Vπ2(s) for all state s ∈ S. Therefore, an optimal policy π∗ will satisfy the condition

Vπ∗(s) ≥ Vπ(s) (2.8)

for all states and policy π. Let define V∗(s) = Vπ∗(s) be optimal value function, Q∗(s, a) =

max
π
Qπ(s, a) be optimal action value function. Replace optimal policy into Equation 2.6 we have

Bellman optimality equation for Q values:

Q∗(s, a) = E[r(s, a) + γ max
a′inA

Q∗(s′, a′)]. (2.9)



CHAPTER 2. BACKGROUND AND RELATED WORKS 16

Similarly, we have the Bellman optimality equation for V values as follows:

V∗(s) = max
a

E[r(s, a) + γV∗(s′)]. (2.10)

In order to approximate V value function andQ value function, we can use some methods such as

TD-learning, Q-learning, and SARSA [3]. TD-learning method calculate the error of the Bellman

equation for one step sample < st, at, rt, st+1 >. At iteration k, V value has formula:

Vk+1(st) = (1− α)Vk(st) + α(r(st, at) + γVk(st+1))], (2.11)

where α is learning rate. The temporal difference (TD) error is calculated by

TD = r(st, at) + γV(st+1)− V(st), (2.12)

and the V value is updated along the TD error as follows:

∆V(st) = α× TD (2.13)

Similarly, The TD error of Q values is calculated by

TD = r(st, at) + γQπ(st+1, at+1)−Qπ(st, at) (2.14)

Action a′ in Equation 2.14 is chosen from the policy π. Based on the choice of π, we can classify

TD error into two methods: SARSA learning and Q-Learning. In SARSA learning (State Action

Reward State Action learning), the agent always follows the “newest” policy (E.g. a′ is chosen

based on “newest” policy) and use this policy to update the Q values

TDSARSA = r(st, at) + γQπ(st+1, at+1)−Qπ(st, at) (2.15)
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Meanwhile, in Q-Learning, a′ is chosen to maximize the Q value. The action a′ can be generated

from past policies.

TDQ−Learning = r(st, at) + γmax
a′
Qπ(st+1, a

′)−Qπ(st, at) (2.16)

Policy-based approach A policy-based approach directly learns a parameterized policy that max-

imizes the cumulative discounted reward as follows:

J(πθ) = E[R(ξ)] =

∫
p(ξ|πθ)R(ξ)dξ, (2.17)

where ξ = {ξ1, ξ2, ..., ξt} is a trajectory (also called an episode, history or roll-out), p(ξ|πθ) is

the probability of generating a trajectory ξ given the policy πθ and θ is parameters of policy πθ.

Some methods used to search for optimal parameters of the policy including policy gradient [48]

[49] [50], expectation maximization [51] [52] [53], evolutionary algorithm [54] [55], or using a

non-parametric policy [56] [57] [58]. Policy gradient updates θ along the gradient direction of the

expected return as

θk+1 = θk + α∇θJ(πθk ), (2.18)

where α denotes a learning rate and k is the current update number. Policy gradient methods

guarantee convergence to an optimum (local optimum). The main computational challenge of a

policy gradient method is to estimate the gradient from given trajectories such that its variance

is small. Expectation maximization (EM) method models RL as Maximum Likelihood Problem.

Particularly, logarit of the cumulative discounted reward can be transformed as follows,

log(J(πθ)) = log

∫
p(ξ|πθ)R(ξ)dξ

=

∫
p(ξ|πθ′) log

p(ξ|πθ′)R(ξ)

p(ξ|πθ′)
dξ +KL(p(ξ|πθ′)||p(ξ|R, πθ′)),

(2.19)

where KL(p(ξ|πθ′)||p(ξ|R, πθ′)) is the Kullback-Leibler divergence and non-negative. So, in or-

der to maximize J(πθ), first, we need to minimize the KL term (E-step) by choosing a distribution
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p(ξ|πθ′) ∝ p(ξ|R, πθ′). Second, we replace the result of E-step to the equation and maximize the

expected complete data log-likelihood (M-step).

Actor-critic approach Actor-critic approach [2] [59] [60] proposed a framework which mixes

between value-based approach and policy-based approach. Particularly, the framework is divided

into two parts: actor part and critic part. The actor part receives a state from an environment

and uses a policy to estimate an action. The critic part receives the state and the reward from

the environment to evaluate how good at that state. The policy of actor part is updated during

the learning process based on the TD error from the critic part. The actor-critic framework is

demonstrated in Figure 2.2.

Figure 2.2: Actor-critic framework with two main elements: actor part and critic part [2]

In this dissertation, we introduce proposed algorithms which based on value-based approach.

They are variations of Q-learning algorithm under the strength of deep learning techniques.

2.1.3 Semi-Markov Decision Process (SMDP)

Learning hierarchical tasks is one of challenges of reinforcement learning. The semi-Markov de-

cision process (SMDP) [17], which is as an extension of MDP, was developed to deal with this

challenge (Figure 2.3).

In this theory, the concept of “options” is introduced as a type of temporal abstraction. An
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Figure 2.3: SMDP is modeled as a sequence of options over MDP

option ξ ∈ Ξ is defined by three elements: an option’s policy π, a termination condition β, and an

initiation set I ⊆ S denoted as the set of states in the option. In addition, a policy over options

µ(ξ|s) is a policy which is used to select the current option. Figure 2.4 shows an example of

SMDP’s executions. First, when an option’s policy πξ is taken, the action at is selected based on

πξ. The environment then transits to state st+1. The option either terminates or continues according

to a termination probability βξ(st+1). When the option terminates (at state st+3), the agent selects

next option ξt+3 based on µ(ξ|st+1).

The total discounted reward received by executing option ξ is defined as follows:

Rξs = E
[ t+k−1∑

i=t

γi−trξ(si, ai)

]
. (2.20)

The multi-time state transition model of option ξ [61], which is initiated in state s and terminates

at state s′ after k steps, has the formula:

Pξss′ =
∞∑
k=1

Pξ(s′, k|s, ξ)γk. (2.21)

where Pξ(s′, k|s, ξ) is the joint probability of ending up at s′ after k steps if taking option ξ at

state s. Given this, we can write the Bellman equation for the value function of policy over options
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µ as follows:

Vµ(s) =
∑
ξ∈Ξ

µ(ξ|s)
[
Rξs +

∑
s′

Pξss′V
µ(s′)

]
(2.22)

and the option-value function:

Qµ(s, ξ) = Rξs +
∑
s′

Pξss′
∑
ξ′∈Ξ

µ(ξ′|s′)Qµ(s′, ξ′). (2.23)

Similarly, the corresponding optimal Bellman equations are as follows:

V∗(s) = max
ξ∈Ξ

[
Rξs +

∑
s′

Pξss′V
∗(s′)

]
(2.24)

Q∗(s, ξ) = Rξs +
∑
s′

Pξss′ max
ξ′∈Ξ
Q∗(s′, ξ′). (2.25)

The optimal Bellman equation can be computed using synchronous value iteration (SVI) [17],

which iterates the following steps for every state:

V(s) = max
ξ∈Ξ

[
Rξs +

∑
s′

Pξss′V(s′, ξ′)

]
. (2.26)

When the option model is unknown, Qt(s, ξ) can be estimated using a Q-learning algorithm with

an estimation formula:

Q(s, ξ)← Q(s, ξ) + α

[
r(s, ξ(s)) + γk max

ξ′∈Ξ
Q(s′, ξ′)−Q(s, ξ)

]
, (2.27)

where α denotes the learning rate, k denotes the number of time steps elapsing between s and s′

and r denotes an intermediate reward if ξ(s) is a primitive action, otherwise r is the total reward

when executing option ξ(s).
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Figure 2.4: An example of SMDP. Black circle illustrates a state, and white circle illustrates the
state where the option is terminated and transit to another option

2.1.4 Partially Observable Markov Decision Process (POMDP)

In many real-world tasks, the agent might not have full observability over the environment. In

principle, those tasks can be formulated as a POMDP defined as a tuple of six components

{S,A,P, r,Ω,Z}, where S,A,P, r are the state space, action space, transition function and re-

ward function, respectively, as in a Markov decision process. Ω and Z are the observation space

and observation model, respectively. POMDPs lack the Markov property, the next state depends

not only on the current state and action but it can also depend on the whole history. We can see a

POMDP as an MDP with belief states bt. The belief states define the probability of being in state

s according to its history of actions and observations. Given a new action and observation, belief

states are updated using the Bayes rule [62] as follows:

b′(s′) ∝ Z(o|s′, a)
∑
s∈S
P(s′|s, a)b(s). (2.28)

Intuitively, the belief states maintain a distribution of what the agent believes about the state that

agent cannot be observable. However, updating belief states requires a high computational cost and

expensive memory [25], thus, it is not applicable. Another approach is using a Q-learning agent

with function approximation, which uses the Q-learning algorithm for updating the policy. Because

updating the Q-value from an observation can be less accurate than estimating from a complete

state, a better way would be that a POMDP agent using Q-learning uses the last k observations

as input to the policy. Nevertheless, the problem with using a finite number of observations is

that key-event observations far in the past would be neglected in future decisions. For this reason,

recurrent neural networks (RNNs) are used to maintain a long-term state as in [63] [64]. In this

dissertation, our proposed algorithms using RNNs at different levels of the hierarchical policies is
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expected to be advantageous in POMDP environments.

2.2 Deep Neural Networks

Recent advances in deep learning [65] are widely applied to reinforcement learning to form deep

reinforcement learning. A few years ago, reinforcement learning still used “shallow” policies such

as tabular, linear function, radial basis function, or neural networks with few layers [5]. The shal-

low policies contain many limitations, especially in representing highly complex behaviors and the

computational cost of updating parameters. In contrast, deep neural networks in deep reinforce-

ment learning can extract more information from the raw inputs by pushing them through neural

network layers such as convolutional layers (CONVs), fully connected layer (FCs) or recurrent

neural layers (RNNs). Multiple layers in DNNs can have a lot of parameters, allowing them to

represent highly non-linear problems. Formally, deep neural networks are parametric models con-

sist of multiple stacked layers of artificial neurons. They are a powerful tool for approximating

value functions. Basically, a deep neural network computes a nested function of the form:

ŷ = fk(Wk . . . f1(W1x+ b1) . . .+ bk). (2.29)

Equation 2.29 can be explained as follows: output prediction ŷ is produced from input x through

k network layers. Each layer transforms its input, first multiplying by a weight matrix Wi, adding

on a vector of biases bi, and finally applying a nonlinear function fi. The final layer of the network

represents output prediction ŷ. The neural networks are trained to minimize the loss function

L = |ŷ − y| using backpropagation algorithm [66]. Backpropagation provides gradients ∆θ(L)

which specify how the parameters of the network should be changed in order to reduce the loss. θ

denotes the vector of all the parameters in the model θ = (W1, b1,W2, b2, ...,Wk, bk).

The choice of nonlinear activation function fi significantly affects the depth and train-

ing time of a neural network. Popular activation functions used in deep neural networks are

sigmoid function, rectified linear unit (ReLU). The sigmoid activation function has the form:

f(x) = 1/(1 + e−x) and ReLU has the form: f(x) = max(0, x). Recently, ReLU largely uses in

deep neural network due to its efficiency in training time
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In addition, advances in deep learning also came in the form of more advanced optimization

methods such as stochastic gradient descent (SGD), or adaptive learning rate optimization methods

(AdaGrad [33], Adam [34] and RMSProp [35], AdaDelta [67]). Throughout this dissertation, we

use the Adam optimizer.

The sections below briefly introduce popular neural networks which are commonly used in

deep reinforcement learning such as convolutional neural networks, multilayer perceptron, and

recurrent neural networks.

2.2.1 Multilayer Perceptron (MLP)

A multilayer perceptron (MLP) is a classical neural network [68] which consists of three or more

layers: an input layer, an output layer, and one or more hidden layers. When MLPs are fully con-

nected, each node in one layer connects with a certain weight Wij to every node in the following

layer. Thus, when the number of the node of each layer increase, the number of weights expo-

nentially increased. It is hard to deal with the input like images which have a lot of pixels. In

the dissertation, we use some fully-connected layers combined with convolutional layers to better

extract features from raw images.

Figure 2.5: A multilayer perceptron example which has two hidden layers

2.2.2 Convolutional Neural Networks (CNN)

Convolutional neural networks (CNNs) [69] were a key innovation for learning from images. At

a high level, CNNs are a method of sharing weights across pixel space. Instead of learning a full

weight matrix, a CNN instead learns low-dimensional filters which are convolved across the input
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pixels. These filters have been shown to learn hierarchical detectors for edges, image parts, and

full objects. CNNs have proven highly successful at static image recognition problems such as the

MNIST, CIFAR, and ImageNet Large-Scale Visual Recognition Challenge [70] [71] [72]. By using

a hierarchy of trainable filters and feature pooling operations, CNNs are capable of automatically

learning complex features required for visual object recognition tasks. In this dissertation, we use

convolutional layers because the input of evaluated domains is represented by images.

Figure 2.6: A convolutional neural network which efficiently extracts features from images

2.2.3 Recurrent Neural Networks (RNN)

Recurrent neural networks (RNNs) are capable of learning features and long-term dependencies

from sequential and time-series data [73]. The structure of hidden states work as the memory of

the network and state of the hidden layer at a time is conditioned on its previous state [74]. This

structure enables the RNNs to store, remember, and process past complex signals for long time

periods. RNNs come in many variants and some well-known RNNs used in real-world applications

such as Long Short Term Memory (LSTM) [75] and Gated Recurrent Unit (GRU) [76]. Recently,

researchers have used RNNs in reinforcement learning to deal with POMDP domains. RNNs have

been successfully applied to domains, such as natural language processing and speech recognition,

and are expected to be advantageous in the POMDP domain, which needs to process a sequence

of observations rather than a single input. In this dissertation, we utilize RNNs, especially LSTM,

to tackle the challenge of domains under partial observability. LSTM (Figure 2.7) has the potential

to construct a complete state from a sequence of partial states.
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2.3 Deep Reinforcement Learning Algorithms

Figure 2.7: Long short term memory architecture

This section presents some DRL algorithms which belong to the value-based approach.

2.3.1 Deep Q-Learning (DQN)

Deep Q-Network (DQN) has been proposed recently by Google Deepmind [27] and has opened a

new era of deep reinforcement learning. It has influenced most later studies in deep reinforcement

learning. In term of the architecture, a Q-network parameterized by θ, e.g., Q(s, a|θ) is built on a

convolutional neural network (CNN) that receives an input of four images of size 84 × 84 and is

processed by three hidden CONV layers. The final hidden layer is a MLP layer with 512 rectifier

units. The output layer is a FC layer, which the number of outputs equal the number of actions. In

term of the learning algorithm, DQN learns Q-value functions iteratively by updating the Q-value

estimation via the temporal difference error:

Q(s, a) := Q(s, a) + α(r + γmax
a′
Q(s′, a′)−Q(s, a)). (2.30)

In addition, the stability of DQN also relies on two mechanisms. The first mechanism is experi-

ence replay memory, which stores transition data in the form of tuples {s, a, s′, r}. It allows the

agent to uniformly sample from and train on previous data (off-policy) in batch, thus reducing

the variance of learning updates and breaking the temporal correlation among data samples. The

second mechanism is the target Q-network, which is parameterized by θ′, e.g., Q̂(s, a|θ′), and is a



CHAPTER 2. BACKGROUND AND RELATED WORKS 26

copy of the main Q-network. The target Q-network is used to estimate the loss function as follows:

L = E
[
(yDQN −Q(s, a|θ))2

]
, (2.31)

where yDQN = r + γmax
a′
Q̂(s′, a′|θ′). Initially, the parameters of the target Q-network are the

same as in the main Q-network. However, during the learning iteration, they are only updated at

a specified time step. This update rule causes the target Q-network to decouple from the main

Q-network and improves the stability of the learning process.

Figure 2.8: Deep Q Network which is applied to solve games in ATARI 2600

Many other models based on DQNs have been developed, such as Double DQN [77], Dueling

DQN [78], and Priority Experiment Replay [79]. On the other hand, deep neural networks can be

integrated into other methods rather than estimating Q-values, such as representing the policy in

policy search algorithms [8], estimating the advantage function [80], or a mixed actor network and

critic network [81].

2.3.2 Double DQN (DDQN)

The idea of Double Q-learning [77] is to reduce overestimations by decomposing the max oper-

ation in the target into action selection and action evaluation. Particularly, we use Q network to

select the best action to take for the next state (E.g. the action with the highest Q value) and use

target Q network to calculate the target Q value of taking the selected action at the next state. The
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formula is the same as DQN, but replacing the target yDQN with yDoubleDQN as follows

yDoubleDQN = r + γQ̂(s′, argmax
a
Q(s′, a|θ)|θ′). (2.32)

2.3.3 Dueling network

The dueling architecture [78] consists of two streams that represent the value and advantage func-

tions while sharing a common convolutional feature learning module. The two streams are com-

bined via a special aggregating layer to produce an estimate of the state-action value function Q.

This dueling network should be understood as a single Q network with two streams that replaces

the popular single-stream Q network in existing algorithms such as DQN. Intuitively, the dueling

architecture can learn which states are (or are not) valuable, without having to learn the effect of

each action for each state. This is particularly useful in states where its actions do not affect the

environment in any relevant way.

Figure 2.9: Deep Q Network (top) and Dueling network (bottom)

2.3.4 Deep Recurrent Q-Learning (DRQN)

The limitation of DQN is that its performance decreases when observed incomplete input state

(POMDP). Peter Stone [63] proposed the deep recurrent Q-network (DRQN) which leverages
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advances in recurrent neural networks to better deal with POMDPs. Particularly, DRQN minimally

modifies the architecture of DQN, replacing only its first fully connected layer with a recurrent

LSTM layer of the same size (Figure 2.10). The architecture of DRQN takes a single 84 × 84

preprocessed image. This image is processed by three convolutional layers and the outputs are

fed to the fully connected LSTM layer. Finally, a linear layer outputs a Q value for each action.

During training, the parameters for both the convolutional and recurrent portions of the network

are learned jointly from scratch. In order to update the network contain recurrent layer, we need to

use a sequence in trajectories in two strategies: bootstrapped sequential updates and bootstrapped

random updates. DRQN uses flickering Atari games to evaluate its performance. The game screens

of the flickering games are either fully revealed or fully obscured with probability p = 0.5, thus,

shows the manner of partial observability. In this dissertation, we use cropped game-screen rather

than the full game-screen, to show the manner of partial observability.

Figure 2.10: Deep recurrent Q network which integrates a long short term memory into deep Q
network
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2.3.5 Hierarchical Deep Q-Learning (hDQN)

Hierarchical Deep Q-learning [44] is a framework for learning hierarchical domains. The model

takes decisions over two levels of hierarchy: (a) the upper level policy called meta-controller, takes

the state and estimates a new goal, (b) the lower-level policies called controller, uses both the state

and the chosen goal to select actions either until the goal is reached or the episode is terminated.

(c) The meta-controller then chooses another goal and steps (a-b) repeat. The model is trained

using stochastic gradient descent at different temporal scales to optimize expected future intrinsic

(controller) and extrinsic rewards (meta-controller). The framework uses notions of intrinsic re-

ward and extrinsic reward instead of a classical reward. Intrinsic reward and extrinsic reward are

used for evaluating the controller and the meta-controller, respectively. Both controllers are built

from deep Q networks and based on the theory of options. The framework is efficient to solve

problems with a long-range delayed reward such as Montezuma’s Revenge game. However, it is

only deal with domains of full MDP

Figure 2.11: Hierarchical deep Q learning framework employs two deep Q networks to solve
hierarchical tasks



Chapter 3
Proposed Methodology

In this section, we introduce our proposed framework called hierarchical deep recurrent Q-

Learning algorithm (hDRQN). First, we describe the underlying theory of hDRQN called POS-

MDP. Second, we introduce two versions of our frameworks and explain the method for learning

these frameworks. Third, we describe some components of our algorithms such as sampling strate-

gies, subgoal definition, and extrinsic and intrinsic reward functions. We rely on partially observ-

able semi-Markov decision process (POSMDP) settings, where the agent follows a hierarchical

policy to solve the POMDP domains.

3.1 Partially Observable Semi-Markov Decision Process (POSMDP)

The setting of POSMDP [61] [22] is described as follows. The domain is decomposed into multiple

subdomains. Each subdomain is equivalent to an option ξ in the SMDP framework and has a

subgoal g ∈ Ω, that needs to be achieved before switching to another option. Within an option, the

agent observes a partial state o ∈ Ω, takes an action a ∈ A, receives an extrinsic reward rex ∈ R,

and transits to another state s′ (but the agent only observes a part of the state o′ ∈ Ω). The agent

executes option ξ until it is terminated (either the subgoal g is obtained or the termination signal

is raised). Afterward, the agent selects and executes another option. The sequence of options is

repeated until the agent reaches the final goal. In addition, to achieve subgoal g in each option, an

intrinsic reward function rin ∈ R is maintained. While the objective of a subdomain is to maximize

the cumulative discounted intrinsic reward, the objective of the whole domain is to maximize the

cumulative discounted extrinsic reward.

Specifically, the belief states are updated given a taken option ξ, observation o and current

30
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belief states b is defined as

b′(s′) ∝
∞∑
k=1

γk−1
∑
s

P(s′, o, k|s, ξ)b(s), (3.1)

where P(s′, o, k|s, ξ) is a joint transition and observation function of the underlying POSMDP

model on the environment.

We adopt a similar notation from the two frameworks MAX-Q [20] and Options [17] to de-

scribe our problem. We denote QM (ot, ξ|θM ) as the Q-value function of the meta-controller at

state ot, θM (in which we use an RNN to encode the past observation that has been encoded via its

weights θM ) and option (macro-action) ξ (assuming ξ has a corresponding subgoal gt). We note

that the pair {ot, θM} represents the belief state at time t, bt (we will use them interchangeably:

QM (b, ξ) or QM (o, ξ|θM )).

The multi-time observation model of option ξ [61], which is initiated in belief state b and

observe o, has the following formula:

P(o|b, ξ) =
∞∑
k=1

∑
s′

∑
s

γkP(s′, o, k|s, ξ)b(s). (3.2)

Using the above formula, we can write the Bellman equation for the value function of the meta-

controller µ (E.g. policy over options) as follows:

VM (b) =
∑
ξ

µ(ξ|b)

[
Rξb +

∑
o′

P(o′|b, ξ)VM (b′)

]
, (3.3)

and the option-value function as

QM (b, ξ) = Rξb +
∑
o′

P(o′|b, ξ)
∑
ξ′∈Ξ

µ(ξ′|b′)QM (b′, ξ′). (3.4)

In case, the reward termRξb is the total reward collected by executing the option ξ, it is equivalent to

an extrinsic reward (E.g. rex) in our model. QM (b, ξ) can be estimated using one step Q-learning
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algorithm as follows,

QM (b, ξ)← QM (b, ξ) + α

[
rex + γk max

ξ′∈Ξ
QM (b′, ξ′)−QM (b, ξ)

]
, (3.5)

In case the reward term Rξb is an immediate reward, it is equivalent to an intrinsic reward (E.g.

rin) and defined as VS(b). Its corresponding Q-value function is defined as QS(b, a) (the value

function for sub-controllers). In the use of RNN, we also denote QS(b, a) as QS({ot, gt}, a|θS),

in which θS is the weights of the sub-controller network that encodes previous observations, and

{ot, gt} denote the observations input to the sub-controller. Similarly, QS(b, a) can be estimated

using one step Q-learning algorithm as follows,

QS(b, a)← QS(b, a) + α

[
rin + γmax

a′∈A
QS(b′, a′)−QS(b, a)

]
. (3.6)

3.2 Proposed frameworks

In this section, we introduce two proposed frameworks of two algorithms: hDRQNv1 and

hDRQNv2.

Frameworks 1 Hierarchical frameworks 1 is briefly illustrated in Figure 3.1 and is clearly

illustrated in Figure 3.2. Basically, version 1 is inspired by a related idea in [44]. The difference

is that our framework is built on two deep recurrent neural policies: a meta-controller and a sub-

controller. By organizing proposed algorithms in form of two hierarchical policies, they can deal

with the tasks having multiple subtasks. the meta-controller has the role of a planner which plans

the agent to complete a sequence of subtasks. It is equivalent to a “policy over subgoals” (in

SMDP) that receives current observation ot and determines new subgoal gt. In contrast, the sub-

controller has the role of a low-level controller which directly interacts with the environment by

performing action at. It is equivalent to the option’s policy in SMDP and receives both subgoal

gt and observation ot as inputs to the deep neural network. Each controller contains an arrow

(Figure 3.1) pointed to itself that indicates that the controller employs recurrent neural networks. In

addition, an internal component called “critic” is used to determine whether the agent has achieved

the subgoal or not and to produce an intrinsic reward that is used to learn the sub-controller. The
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Figure 3.1: Framework 1 (Brief version)

networks for the controllers are illustrated in Figure 3.2. A sequence of four CONV layers and

ReLU layers interleaved together is used to extract information from the raw observations. A

recurrent layer, especially LSTM, is employed in front of the features to memorize the information

from previous observations. CONVs are used to learn low-dimensional representations for image

inputs, while the recurrent layer is used to capture the temporal relations among the observation

data. Without using the recurrent layer, CONVs cannot accurately approximate the state features

from observations in the POMDP domain. The output of the recurrent layer is split into Advantage

streamA and Value stream V before being unified with theQ-values. This architecture is inherited

from the Dueling architecture [78], which effectively learns states without having to learn the

effect of an action on that state. The input of the meta-controller’s network is a raw image (color

image) while the input of the sub-controller’s network is two raw images: one for observation and

one for subgoal. The output of the meta-controller’s network is a vector of Q values called QM .

The number of QM values equals the number of predefined subgoals. Meanwhile, the output of

sub-controller’s network is a vector of Q values called QS . The number of QS values equals the

number of primitive actions.
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Figure 3.3: Workflow of framework 1

From the framework in Figure 3.2, we can interpret into the workflow in Figure 3.3. In this

workflow, either meta-controller or sub-controller is activated at a time, and meta-controller is the

first controller activated. Particularly, at step t, the meta-controller takes an observation ot from

the environment, extracts state features through some deep neural layers, internally constructs a

hidden state hMt , and produces the Q subgoal values QM (ot, gt|θM ). The Q subgoal values then

are used to determine next subgoal gt+k. Similarly, the sub-controller receives both observation ot

and subgoal gt, extracts their feature, constructs a hidden state hSt , and produces Q action values

QS({ot, gt}, at|θS), which are used to determine next action at+1.

Framework 2 In contrast to the framework 1, framework 2 in Figure 3.5 and Figure 3.4 does

not use the current observation to determine the subgoal in the meta-controller but instead uses

the last hidden state hSt of the sub-controller. The last hidden state that is inferred from a sequence

of observations of the sub-controller is expected to contribute to the meta-controller to correctly

determine the next subgoal. For framework 2, the network of the sub-controller is the same as the

network of the sub-controller in the framework 1. However, because the meta-controller uses the

internal hidden state of the sub-controller as the input rather than a raw image, the network of

the meta-controller is constructed by three fully connected layers and ReLU layers for extracting

the features. The part of the network behind the features is the same as the meta-controller in the

framework 1. Similarly, the framework 2 is interpreted to the workflow in Figure 3.6. The red

arrow indicates the relationship between sub-controller and meta-controller where hidden states

from the sub-controller are the input of the meta-controller.
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3.3 Learning Model

As discussed from the previous section, the meta-controller receives an observation ot (frame-

work 1) or hidden states hS from sub-controller (framework 2) and outputs a Q subgoal val-

ues QM (ôt, gt|θM ) where ôt can be ot or hS , and θM is parameters of meta-controller includ-

ing weights and biases. Similarly, QS({ot, gt}, at|θS) is Q action value generated by the sub-

controller where subgoal gt and observation ot is inputs and θS is parameters. Concurrently, both

controllers generate hidden states called hM and hS because they employ recurrent layers. For-

mally, we have:

hMt ,QM (ôt, gt|θM ) = fMRNN (ΦM , hMt−1) (3.7)

hSt ,QS({ot, gt}, at|θS) = fSRNN (ΦS , hSt−1), (3.8)

where fMRNN and fSRNN are the respective recurrent networks of the meta-controller and the sub-

controller, which receive the state features and previous hidden states and then provide the next
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hidden states and Q values. ΦM and ΦS are the features after the extraction process of the meta-

controller and the sub-controller, respectively. The formula of ΦM and ΦS in formal form is as

follows:

ΦM =


fMextract(ot) framework 1

fMextract(h
S) framework 2

(3.9)

ΦS = fSextract(ot, gt), (3.10)

where fMextract and fSextract infer the network part to extract features from raw images (E.g. CONV

layers and FC layers)

In order to learn the parameters of the network, we use a state-of-the-art Double DQN method.

In contrast to DQN, which uses the maximum operator for both selecting and evaluating an action,

Double DQN separately uses the main Q network to greedily estimate the next action and the

target Q network to estimate the value function. This method has been shown to achieve better

performance than DQN regarding Atari games [77]. The method is explained in details as follows.

Learning in meta-controller When a subdomain completed (E.g. A subgoal obtained), a tuple

of < ô, g, ô′, rex > is stored to an experience replayMM (Figure 3.7). At each time step, a batch

of samples is randomly selected from the experience replay. These samples are used to update

the parameters of the network. Particularly, QM is trained by minimizing the loss function LM as
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ô 
n+1 r

ex

n

Experience Replay

. 

. 

. 

< , , , >ô 2 g2 ô 3 r
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follows:

LM = E(o,g,o′,g′,rex)∼MM
[
yMi −QM (o, g|θM )

]
, (3.11)

where E denotes the expectation over a batch of data which is uniformly sampled from experience

replayMM , i is the iteration number in the batch of samples and yMi is the target value of QM .

yMi is calculated based on Double DQN technique as follows,

yMi = rex + γQM ′(o′, argmax
g′

QM (o′, g′|θM )|θM ′). (3.12)

where and QM ′ is the target network of QM

Learning in sub-controller Similarly, at each time step, a tuple of < {o, g}, a, rin, {o′, g′} >

is stored to an experience replayMS (Figure 3.8) and a batch of samples is randomly selected to
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update parameters of QS . The parameters of QS is updated to minimize the loss function LS

LS = E(o,g,a,rin)∼MS
[
ySi −QS({o, g}, a|θS)

]
, (3.13)

where

ySi = rin + γQS′({o′, g}, argmax
a′

QS({o′, g}, a′|θS)|θS′). (3.14)

and QS′ is the target network of QS .
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3.4 Minibatch Sampling Strategy

For updating RNNs in our model, we need to analyze a batch of samples. Particularly, episodes

from the experience replay are uniformly sampled and processed from the beginning of the episode



CHAPTER 3. PROPOSED METHODOLOGY 41

to the end of the episode. This strategy called Bootstrapped Sequential Updates [63], is an ideal

method to update RNNs because their hidden state can carry all information throughout an entire

episode. However, this strategy is computationally expensive in a long episode, which can contain

many time steps. Another approach, proposed in [63], has been evaluated to achieve the same per-

formance as Bootstrapped Sequential Updates while also reducing the computational complexity.

The strategy called Bootstrapped Random Updates, is illustrated in Figure 3.9. This strategy ran-

domly selects a batch of episodes from the experience replay. Then, for each episode, we begin

at a random index and select a sequence of n transitions. The value of n, which affects the per-

formance of our algorithms, is analyzed in Chapter 4. For each controller, we have nM and nS

corresponding to the length of sampled transitions in the meta-controller and the sub-controller.

We apply the same procedure of Bootstrapped Random Updates to our algorithms.
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Figure 3.9: Bootstrapped random updates strategy

In addition, the mechanism explained in [82] is also applied. That study discusses a problem

when updating DRQN: using the first observations in a sequence of transitions to update the Q

value function might be inaccurate. Thus, the solution is to use the last observations to update

DRQN. Particularly, our method uses the last n2 transitions to update the Q-value.
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3.5 Subgoal Definition

Our model is based on the “option” framework. Learning an option is accomplished via flat deep

RL algorithms to achieve a subgoal of that option. Each subgoal is equivalent to an option termi-

nation β(s). When the agent has the same position with the subgoal, we state that the agent has

obtained the subgoal and another subgoal is assigned. However, due to the curve of dimension-

ality in RL, discovering subgoals among existing states in the environment is still a challenge in

hierarchical reinforcement learning. To simplify the model, we assume that a set of pre-defined

subgoals is provided in advance.

The pre-defined subgoals based on object-oriented MDPs [83], where entities or objects in the

environment are decoded as subgoals. Besides, each entity in the environment has a relationship

with other entities. For example, in the domain of two goals in four-rooms (Figure 3.10), we have

five entities: agent, blue goal, green goal, first obstacle, second obstacle. Relationships between

entities are as follows: agent reaches the blue goal, agent reaches the green goal, agent hits the

first obstacle, agent hits the second obstacle. They are used in the internal critic to build intrinsic

reward functions.

3.6 Intrinsic and Extrinsic Reward Functions

Figure 3.10: Example domain for illustrating the notions of intrinsic and extrinsic motivation

Traditional RL accumulates all reward and penalty based on a reward function, which is dif-

ficult to learn in a specified task in a complex domain. In contrast, hierarchical RL introduces the

notions of an intrinsic reward function and an extrinsic reward function. Initially, intrinsic moti-
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vation is based on psychology, cognitive science, and neuroscience [84] and has been applied to

hierarchical RL [85] [86] [87] [88] [89] [90]. Our framework follows the model of intrinsic moti-

vation in [86]. Particularly, within an option (or skill), the agent needs to learn an option’s policy

(the sub-controller in our framework) to obtain a subgoal (a salient event) under the reinforcement

of an intrinsic reward while a policy over options (the meta-controller) is learned to generate a

sequence of subgoals under the reinforcement of an extrinsic reward, for the overall task. Defin-

ing “good” intrinsic reward functions and extrinsic reward functions is still an open question in

reinforcement learning, and it is difficult to find a reward function model that is generalized to all

domains.

To demonstrate some of the notions above, Figure 3.10 describes the domain of multiple goals

in four-rooms, which is used to evaluate our algorithm in Chapter 4. The four-rooms contain a

number of objects: an agent (in black), two obstacles (in red) and two goals (in blue and green).

These objects are randomly located on the map. At each time step, the agent has to follow one of

the four actions: top, down, left or right, and has to move to the goal location in a proper order:

the blue goal first and then the green goal. If the agent obtains all goals in the right order, it will

receive a big reward; otherwise, it will only receive a small reward. In addition, the agent has to

learn to avoid the obstacles if it does not want to be penalized. For this example, the salient event is

equivalent to reaching the subgoal or hitting the obstacle. In addition, there are two skills the agent

should learn. One is moving to the goals while correctly avoiding the obstacles, and the second

is selecting the goal it should reach first. The intrinsic reward for each skill is generated based on

the salient events encounters while exploring the environment. Particularly, to reach the goal, the

intrinsic reward includes the reward for reaching the goal successfully and the penalty if the agent

encounters an obstacle. To reach the goals in order, the intrinsic reward includes a big reward if

the agent reaches the goals in the proper order and a small reward if the agent reaches the goal

in an improper order. A detailed explanation of intrinsic and extrinsic rewards for this domain is

included in Chapter 4.
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Algorithm 1: hDRQN in POMDP
Require:

1: POMDP M = {S,A,P, r,Ω,Z}
2: Meta-controller with the network QM (main) and QM ′ (target) parameterized by θM and
θM
′
, respectively.

3: Sub-controller with the network QS (main) and QS′ (target) parameterized by θS and θS
′
,

respectively.
4: Exploration rate εM for meta-controller and εS for sub-controller.
5: Experience replay memoriesMM andMS of meta-controller and sub-controller,

respectively.
6: A pre-defined set of subgoals G.
7: fM and fS are recurrent networks of meta-controller and sub-controller, respectively.

Ensure:
8: Initialize:

• Experiences replay memoriesMM andMS ;

• Randomly initialize θM and θS ;

• Assign value to the target networks θM
′ ← θM and θS

′ ← θS ;

• εM ← 1.0 and decreasing to 0.1 ;

• εS ← 1.0 and decreasing to 0.1 ;

9: for k = 1, 2, . . .K do
10: Initialize: the environment and get the start observation o ;
11: Initialize: hidden states hM ← 0;
12: while o is not terminal do
13: Initialize: hidden states hS ← 0;
14: Initialize: start observations o0 ← ô where ô can be observation o or hidden state hS ;
15: Determine subgoal: g, hM ← EPS GREEDY (ô, hM ,G, εM ,QM , fM ) ;
16: while o is not terminal and g is not reached do
17: Determine action: a, hS ← EPS GREEDY ({o, g}, hS ,A, εS ,QS , fS) ;
18: Execute action a, receive reward r, extrinsic reward rex, intrinsic reward rin, and

obtain the next state s′ ;
19: Store transition {{o, g}, a, rin, {o′, g′}} inMS ;
20: Update sub-controller SUB UPDATE(MS ,QS ,QS′) ;
21: Update meta-controller META UPDATE(MM ,QM ,QM ′) ;
22: Transition to next observation o← o′ ;
23: end while
24: Store transition {o0, g, r

ex
total, ô

′} inMS where ô′ can be observation o′ or the last
hidden state hS ;

25: end while
26: Anneal εM and εS ;
27: end for
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Algorithm 2: EPS GREEDY (x, h,B, ε,Q, f)

Require:
1: x: input of the Q network
2: h: internal hidden states
3: B: a set of outputs
4: ε: exploration rate
5: Q network and recurrent function f

Ensure:
6: h← f(x, h) ;
7: if random() < ε then
8: o← An element from the set of output B;
9: else

10: o = argmaxm∈BQ(x,m);
11: end if
12: Return o, h;

3.7 Pseudo-code Algorithms

In this section, our contributions are summarized through pseudo-code Algorithm 1. The algo-

rithm learns four neural networks: two networks for the meta-controller (QM and QM ′) and two

networks for the sub-controller (QS and QS′). They are parameterized by θM , θM
′
, θS and θS

′
,

respectively. The architectures of the networks are described in Section 3.2. In addition, the algo-

rithm separately maintains two experience replay memoriesMM andMS to store transition data

from the meta-controller and the sub-controller, respectively. Before starting the algorithm, the

parameters of the main networks are randomly initialized and are copied to the target networks.

εM and εS are annealed from 1.0 to 0.1, which gradually increase the control of the controllers.

The algorithm started by looping through a specified number of episodes (Line 9) and each

episode is executed until the agent reaches the terminal state. To start an episode, first, a starting

observation o0 is obtained (Line 10). Next, hidden states, which are inputs for the RNNs, must be

initialized with zero values (Line 11 and Line 13) and are updated during the episode (Line 15

and Line 17). Each subgoal is determined by passing observation o or hidden state hS (depending

on the framework) to the meta-controller (Line 15). By following a greedy ε fashion, a subgoal

will be selected from the meta-controller if it is a random number greater than ε. Otherwise, a

random subgoal will be selected (Algorithm 2). The sub-controller is taught to reach the subgoal;
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Algorithm 3: META UPDATE(MM ,QM ,QM ′)
Require:

1: MM : experience replay memory of meta-controller
Ensure:

2: Sample a mini-batch of {o, g, rex, o′} fromMM as the strategy explained at 3.4;
3: Update the network by minimizing the loss function:

LM = E(o,g,o′,g′,rex)∼MM
[
yMi −QM (o, g|θM )

]
where

yMi = rex + γQM ′(o′, argmax
g′

QM (o′, g′|θM )|θM ′)

4: Update the target network: θM ′ ← τθM + (1− τ)θM
′

when the subgoal is reached, a new subgoal will be selected. The process is repeated until the final

goal is obtained. The intrinsic reward is evaluated by the critic module and is stored inMS (Line

19) for updating the sub-controller. Meanwhile, the extrinsic reward is directly received from the

environment and is stored inMM for updating the meta-controller (Line 24).

The main part of the proposed algorithm is updating the controllers at Line 20 and 21. Pseudo-

code of updating the meta-controller and the sub-controller is shown in Algorithm 3 and Algorithm

4, respectively. In Algorithm 3, a batch of data is sampled fromMM at Line 2 and is used to update

main networkQM at Line 3 using Double DQN which is described in Section 3.3. Finally, we use

a soft update technique to update target network QM ′ at Line 4. The soft update technique uses a

small learn rate τ to update the target network, thus, decoupling from the main network. Similarly,

updating the sub-controller in Algorithm 4 has the same procedure as updating the meta-controller.
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Algorithm 4: SUB UPDATE(MS ,QS ,QS′)
Require:

1: MS : experience replay memory of meta-controller
2: Sample a mini-batch of {{o, g}, a, rin, {o′, g′}} fromMS as the strategy explained at 3.4;
3: Update the main network by minimizing the loss function:

LS = E(o,g,a,rin)∼MS
[
ySi −QS({o, g}, a|θS)

]
,

where

ySi = rin + γQS′({o′, g}, argmax
a′

QS({o′, g}, a′|θS′)|θS′)

4: Update the target network: θS′ ← τθS + (1− τ)θS
′



Chapter 4
Experimental Results and Discussions

In this section, we evaluate two versions of the hierarchical deep recurrent network algorithm in

terms of reward (intrinsic and extrinsic) and success ratio. hDRQNv1 is the algorithm formed by

framework 1, and hDRQNv2 is the algorithm formed by framework 2. We compare them with

flat algorithms (DQN, DRQN) and the state-of-the-art hierarchical RL algorithm (hDQN). The

comparisons are performed on three domains. The domain of multiple goals in a gridworld is used

to evaluate many aspects of the proposed algorithms. Meanwhile, the harder domain called mul-

tiple goals in four-rooms, is used to compare the proposed algorithms with baselines algorithms.

Finally, one of the most challenging games in ATARI 2600 [26], called Montezuma’s Revenge,

is used to confirm the efficiency of our proposed framework. A sample animation of evaluated

domains can be found here 1

4.1 Experiment Settings

4.1.1 Domains

We evaluate the proposed algorithms on five domains which are summarized in Table 4.1 and are

described in detail as follows:

Two Goals in Gridworld A gridworld map of size 11×11 units contains a number of objects:

an agent (in black), two obstacles (in red) and two goals (in blue and green). These objects are

randomly located on the map. At each time step, the agent has to follow one of the four actions:

top, down, left or right, and has to move to the goal location in a proper order: the blue goal

first and then the green goal. If the agent obtains all goals in the right order, it will receive a big
1A sample animation of evaluated domains: https://youtu.be/r2wQiOc6euE

48
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Table 4.1: Summarization of domains

Domains Subgoals Obstables Size Remark

Two goals in gridworld 2 2 11 x 11 gridworld
Three goals in gridworld 3 2 11 x 11 gridworld
Two goals in four-rooms 2 2 11 x 11 four-rooms
Three goals in four-rooms 3 2 11 x 11 four-rooms
Montezuma’s Revenge 7 1 210 x 160 complex map

(a) Two goals in the gridworld do-
main

(b) Three goals in the gridworld do-
main

(c) 3× 3 unit

(d) 5× 5 unit

Figure 4.1: Multiple goals in the gridworld domain

reward; otherwise, it will only receive a small reward. In addition, the agent has to learn to avoid

the obstacles if it does not want to be penalized. At each time step, the agent only observes a part

of the surrounding environment, either a 3×3 units (Figure 4.1c) or 5×5 units (Figure 4.1d). The

agent is allowed to choose one of four actions (top, left, right, bottom), which are deterministic.

The agent cannot move if the action leads it into the wall. The rewards for the agent are defined

as follows. If the agent hits an obstacle, it will receive a penalty of minus one. If the agent reaches

two goals in proper order, it will receive a reward of one for each goal. Otherwise, it only receives

0.01. The hDRQN algorithms use an intrinsic reward function and an extrinsic reward function,

which are defined as follows:

rin =


1 obtain a goal

−1 hit an obstacle
(4.1)
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and

rex =


1 for each reached goal in proper order

0.01 for each reached goal in improper order
(4.2)

In addition, we also maintain a classical reward which is used to compare with baseline algorithms:

r =



1 for each reached goal in proper order

0.01 for each reached goal in improper order

−1 hit an obstacle

(4.3)

Three Goals in Gridworld This domain is similar to the domain of two goals in gridworld,

but added one more goal (cyan). The agent similarly receives a big reward if it visits all goals in

proper order: blue⇒ green⇒ cyan, and does not hit the obstacles. The hierarchical property of

this domain is shown in Figure 4.2 in which each goal in the domain is equivalent to subgoals in

the hierarchical algorithms. The meta-controller learns to obtain subgoals in proper order while

the sub-controller learns to obtain the particular goal. We expect that the algorithms can adapt to

the increasing of number of subgoals.

ROOT

BLUE GREEN

UP LEFT RIGHT DOWN

subgoals

4 primitive actions

CYAN

Figure 4.2: Hierarchy of the domains of multiple goals
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Multiple Goals in Four-rooms In this domain, we apply the multiple goals domain to a com-

plex map called four-rooms (Figure 4.3). The dynamics of the environment in this domain is

similar to the domain of multiple goals in gridworld. The difference is that the agent in this do-

main must usually pass through hallways to obtain goals that are randomly located in four rooms.

By using a four-rooms map, we challenge the agent and expect it can effectively learn in a more

complex map. Originally, the four-rooms domain was an environment for testing a hierarchical

reinforcement learning algorithm [17].

(a) Two goals in the four-rooms do-
main

(b) Three goals in the four-rooms
domain

(c) 3× 3 unit

(d) 5× 5 unit

Figure 4.3: Multiple goals in the four-rooms domain

Montezuma’s Revenge Montezuma’s Revenge is one of the hardest games in ATARI 2600,

and the DQN algorithm [27] can only achieve a score of zero. We use OpenAI Gym to simulate

this domain [91]. The game is hard because the agent must execute a long sequence of actions until

a state with non-zero reward (delayed reward) can be visited. In addition, in order to obtain a state

with larger rewards, the agent needs to reach a special state in advance. This dissertation evaluates

our proposed algorithms on the first screen of the game (Figure 4.4). Particularly, the agent, which

only observes a part of the environment (Figure 4.4b), needs to pass through doors (the yellow

line in the top left and top right corners of the figure) to explore other screens. However, to pass

through the doors, first, the agent needs to pick up the key on the left side of the screen. Thus, the

agent must learn to navigate to the key’s location and then navigate back to the door and transit to

the next screen. The agent will earn 100 points after it obtains the key and 300 after it reaches any

door (with a key obtained in advance). In total, the agent can receive 400 points for this screen.
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(a) The first screen of Montezuma’s Revenge
game

(b) Observable
area

Figure 4.4: Montezuma’s Revenge game in ATARI 2600

The intrinsic reward function is defined to motivate the agent to explore the whole environ-

ment. Particularly, the agent will receive an intrinsic value of 1 if it could reach a subgoal from the

other subgoals. The set of subgoals is pre-defined in Figure 4.4a (the white rectangles). In contrast

to the intrinsic reward function, the extrinsic reward function is defined as a reward value of 1

when the agent obtains the key or opens the doors.

rin =


1 reach subgoal

0 otherwise
(4.4)

and

rex =


1 obtain the key or open the doors

0 otherwise
(4.5)

In addition, we also maintain a classical reward which is used to compare with baseline algorithms.
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Particularly, A score of 100 points is given after agent obtains the key and a score of 300 is given

after agent reaches any door (with the obtained key)

r =


100 obtain key

300 open doors
(4.6)

The domain can be interpreted to a hierarchy of subdomain as Figure 4.5. The first level of hierar-

chy tree is seven subgoals which are defined in Table 4.2 and the second level of hierarchy tree is

18 actions which are defined in Tables 4.3.

ROOT

LEFT
DOOR

RIGHT
DOOR ROPE KEY...

LEFT RIGHT JUMP DOWN... UP

subgoals

18 primitive actions

Figure 4.5: Hierarchy of Montezuma’s Revenge game

Table 4.2: Seven predefined subgoals in Montezuma’s Revenge

7 subgoals

left-door
top-mid-ladder

right-door
top-right-ladder

bottom-right-ladder
bottom-left-ladder

key



CHAPTER 4. EXPERIMENTAL RESULTS AND DISCUSSIONS 54

4.1.2 Baselines

We compare our proposed algorithms with some baseline algorithms: DQN, DRQN, hDQN and

summarize them in the Table 4.4

Deep Q-Learning algorithm (DQN) DQN described in Section 2.3.1, is a state-of-the-art

algorithm. It starts the era of deep reinforcement learning. It has a remarkable achievement on

almost ATARI 2600 games. However, it fails to solve the Montezuma’s Revenge game and only

works with fully observable domains

Table 4.3: 18 primitive actions of the agent in Montezuma’s Revenge equivalent to 18 combina-
tions of joystick’s buttons

18 actions

NOOP
FIRE
UP

RIGHT
LEFT

DOWN
UPRIGHT
UPLEFT

DOWNRIGHT
DOWNLEFT

UPFIRE
RIGHTFIRE
LEFTFIRE

DOWNFIRE
UPRIGHTFIRE
UPLEFTFIRE

DOWNRIGHTFIRE
DOWNLEFTFIRE

Deep Recurrent Q-Learning algorithm (DRQN) DRQN described in Section 2.3.4, is pro-

posed to solve domains under partial observability. By introducing a framework which combines

DQN and LSTM, DRQN has the ability to capture the correlation in a sequence of transitions

under partial observability. Flickering ATARI 2600 games is used to show the efficiency of DRQN

under partial observability. However, it cannot overcome the challenges raised by hierarchical

domains.



CHAPTER 4. EXPERIMENTAL RESULTS AND DISCUSSIONS 55

Hierarchical Deep Q-Learning (hDQN) hDQN described in Section 2.3.5, can deal with

hierarchical domains by introducing a framework of two levels of policies. Upper policy plans the

agent to complete subgoals and lower policies control the agent to perform primitive actions. The

algorithm can pass Montezuma’s Revenge game under full observability.

Table 4.4: Comparison between algorithms

Algorithms MDP POMDP Hierarchical domains

DQN o x x
DRQN o o x
hDQN o x o

hDRQNv1 o o o
hDRQNv2 o o o

4.1.3 Evaluation Metric

Some common metrics used to evaluate RL algorithms are expected cumulative reward, expected

steps. On Montezuma’s Revenge game, we use the success ratio to show how much the subdomain

completed. In addition, we use expected cumulative extrinsic and expected cumulative intrinsic to

show the performance of the meta-controller and the sub-controller.

Expected cumulative reward We sum the reward of agent for through the entire episodes and

get the average reward by running the algorithm multiple times.

Expected steps The number of steps to complete the domains is used to compare algorithms.

The better algorithm will complete the domain quickly.

Expected cumulative extrinsic and expected cumulative intrinsic They are introduced by

the meta-controller and the sub-controller in the hierarchical algorithms.

Success ratio shows how much the subdomains completed

4.1.4 Algorithms Settings

The settings for each domain are different, but they have some commonalities as follows. For

the hDRQNv1 algorithm, the inputs to the meta-controller and the sub-controller are an image

of size 44 × 44 × 3 (a color image). The input image is resized from an observation, which is
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Table 4.5: Configuration of hDRQNv1’s networks
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Table 4.6: Configuration of hDRQNv2’s networks
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Table 4.7: Parameters of proposed algorithms

Name Abbreviation Values

Optimization Method ADAM [34]

Learning rate α 0.0001

Discounted factor γ 0.99

Sub-controller experience
replay

MS 5000 episodes

Meta-controller experience
replay

MM 1000 episodes

Soft-update target network τ 0.001

Batch size of meta-
controller

NM 12

Batch size of sub-controller NS 4

Update frequence freq 5

Exploration rate of meta-
controller

εM 1.0⇒ 0.1

Exploration rate of sub-
controller

εS 1.0⇒ 0.1

Length of meta-transition nS variant

Length of sub-transition nM variant

Initialization method Xavier Initializer [92]
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observed around the agent (either 3 × 3 unit or 5 × 5 unit). The image feature of 256 values

extracted through four CONVs and ReLUs is put into a LSTM layer of 256 states to generate

256 output values, and internal hidden states of 256 values is also constructed. For the hDRQNv2

algorithm, hidden states of 256 values is put into the network of the meta-controller. The states are

passed through three fully connected layers and ReLU layers instead of four CONV layers. The

output is features of 256 values. The algorithm uses ADAM [34] for learning the neural network

parameters with the learning rate 0.0001 for both the meta-controller and the sub-controller. The

algorithms update the parameter at each five time steps and use a soft-update of 0.001 to update

the parameters of target networks. The size of minibatch is 12 and 4 for meta-controller and sub-

controller respectively. The algorithm uses a discount factor of 0.99. The capacity ofMS andMM

is 5000 episodes and 1000 episodes, respectively. The configuration of networks is summarized in

Table 4.5 (hDRQNv1) and Table 4.6 (hDRQNv2), and the parameters of the proposed algorithms

are summarized in Table 4.7. The selected parameters of the proposed algorithms are optimal

values which are chosen based on the performance of algorithms and the power of the computer

(Table 4.8) which is used to do the experiments. The length of sampled transitions, nS and nM

is varying depending on the specified domains. In section 4.2, we evaluate the effects of these

parameters on the performance of algorithms. In addition, the level of observation also affects

to the performance of the proposed algorithms. So, we evaluate the impact of this parameter in

section 4.3.

4.1.5 Environment Settings

We implement the algorithms using python (Python 2.7) code. The network part is constructed

using Tensorflow v1.4 [93]. In addition, in the implementation code, we use OpenCV library to

crop a full image into a cropped image ans resize the images to fit with the input of controllers.

The experiments are performed on a machine which has the configuration as shown in Table 4.8
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Table 4.8: Environment settings

Name Configuration

Python v2.7

OpenCV v3.4.0

Tensorflow v1.4

Platform Ubuntu

CPU Intel Core i7

GPU Nvidia 1080 8GB

Cuda 8.0

RAM 64GB

Hard disk SSD 256

4.2 Experiment 1: Comparison on Different Length of Transition

4.2.1 Description

In the first evaluation, we use the domain of two goals in gridworld to compare each proposed

algorithm with different lengths of selected transitions which are discussed in Section 3.4. The

agent in this evaluation can observe an area of 5 × 5 units. We report the performance through

three runs of 20000 episodes, where each episode has 50 steps. The number of steps for each

episode assures that the agent can explore any location on the map.

4.2.2 Results

Different lengths of sub-transitions on hDRQNv1 On hDRQNv1, we use a fixed length of meta-

transitions (nM = 1) and compare different lengths of sub-transitions. The report is shown in

Figure 4.6. With a fixed length of meta-transitions, the algorithm performs well with a long length

of sub-transition (nS = 8 or nS = 12). The performance decreases when the length of sub-

transitions is decreased. The second observation is that with nS = 8 or nS = 12, there is little

difference in performance. The average number of steps to obtain two goals in order is around 22.

Different lengths of sub-transitions on hDRQNv2 Similarly for hDRQNv2, we use a fixed

length of meta-transitions (nM = 1) and compare different lengths of sub-transitions. The report
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is shown in Figure 4.7. Similarly, the algorithm performs well with a long length of sub-transition.

nS = 8 seems converging faster than nS = 12

Different lengths of meta-transitions on hDRQNv1 and hDRQNv2 The report is shown

in Figure 4.8. For a fixed length of sub-transitions (nS = 8), with the hDRQNv1 algorithm, the

setting with nM = 2 has low performance and high variance compared to the setting with nM = 1.

Meanwhile, with the hDRQNv2 algorithm, the performance is the same at both settings nM =

1 and nM = 2. Meta-controller of hDRQNv2 has better performance than meta-controller of

hDRQNv1. As a result, the performance of hDRQNv2 outperforms the performance of hDRQNv1.
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Figure 4.6: Evaluation of different lengths of sub-transitions on hDRQNv1. We use a fixed length
of meta-transitions (nM = 1)
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Figure 4.7: Evaluation of different lengths of sub-transitions on hDRQNv2. We use a fixed length
of meta-transitions (nM = 1)
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Figure 4.8: Evaluation of different lengths of meta-transitions on hDRQNv1 and hDRQNv2. We
use a fixed length of sub-transitions (nS = 8)
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4.2.3 Discussion

Intuitively, the recurrent layer needs a sequence of transitions (E.g. histories) that is long enough to

increase the probability that the agent will reach the subgoal within that sequence. In case of two

goals in gridworld domain, they are nS = 8 and nM = 1. This is reasonable because only eight

transitions of sub-controller are needed for the agent to reach any subgoals and one transition

of meta-controller to complete a task of two subgoals. While sub-controller of hDRQNv1 and

hDRQNv2 has the same performance, meta-controller of hDRQNv2 outperforms meta-controller

of hDRQNv1. This indicates that the hidden states from the sub-controller are a better input to

determine the subgoal rather than a raw observation.

4.3 Experiment 2: Comparison on Different Level of Observations

4.3.1 Description

In the second evaluation, we use the domain of two goals in gridworld to compare proposed algo-

rithms at different levels of observation. Figure 4.9 shows the performance of hDRQN algorithms

with a 3 × 3 observable agent compared with a 5 × 5 observable agent and a fully observable

agent. We report the performance through three runs of 100000 episodes, where each episode has

50 steps.

4.3.2 Results

From the figure, the performance of a 5× 5 observable agent using hDRQNv2 seems to converge

faster than a fully observable agent. However, the performance of the fully observable agent sur-

passes the performance of 5 × 5 observable agent at the end. The 3 × 3 observable agents (both

hDRQNv1 and hDRQNv2) have poor performance compare to the 5× 5 observable agent and the

fully observable agent. The 5 × 5 observable agent using hDRQNv2 has better performance than

the fully observable agent using hDRQNv1.
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Figure 4.9: Evaluation on different levels of observation

4.3.3 Discussion

It is clear that a fully observable agent has more information around it than a 5 × 5 observable

agent and a 3 × 3 observable agent; thus, the agent with a larger observation area can explore

and localize the environment completely. As a result, the performance of the agent with a larger

observation area is better than the agents with smaller observing abilities. However, even though

a 5 × 5 observable agent using hDRQNv2 has a smaller observable area than a fully observable

agent using hDRQNv1, the performance of hDRQNv2 based agent is better than the performance

of hDRQNv1 based agent. It shows that using features constructed from a sequence of the par-

tial observation (hDRQNv2) seems better than using features constructed from a full observation

(hDRQNv1).

4.4 Experiment 3: Performance Comparison

4.4.1 Description

In the third evaluation, we compare the performance of the proposed algorithms with the well-

known algorithms DQN, DRQN, and hDQN [44]. Both algorithms assume that the agent only

observes an area of 5× 5 units around it and use nM = 2 and nS = 8 for meta-transition and sub-

transition, respectively. The performance of two goals in gridworld domain is averaged through



CHAPTER 4. EXPERIMENTAL RESULTS AND DISCUSSIONS 66

three runs of 20000 episodes and each episode has 50 time steps. Meanwhile, the performance of

three goals in gridworld and two goals in four-rooms are averaged through three runs of 50000

episodes and each episode has 50 time steps. Finally, performance of three goals in four-rooms is

averaged through three runs of 100000 episodes, and each episode has 100 time steps.

4.4.2 Results

The results of multiple goals in gridworld and in four-rooms are shown in Figure 4.10 and Fig-

ure 4.13, respectively. For both domains with two goals and three goals, the hDRQN algorithms

outperform the other algorithms and hDRQNv2 has the best performance. The hDQN algorithm,

which can operate in a hierarchical domain, is better than the flat algorithms but not better than the

hDRQN algorithms.

4.4.3 Discussion

The proposed algorithms have shown their abilities in solving hierarchical tasks under partial

observability. Meanwhile, DQN and hDQN requires a sequence of full observation, and DRQN

has problems with hierarchical tasks. There have no baselines algorithms can solve two problems

(E.g. hierarchical task and partial observability) simultaneously.

4.5 Experiment 4: Montezuma’s Revenge

4.5.1 Description

The setting of sub-transition and meta-transition is 8 and 16, respectively. In this domain, the

agent can observe an area of 70× 70 pixels. The observation area is then resized to 44× 44 to fit

the input of the controller’s network. Because learning the meta-controller and the sub-controllers

simultaneously is highly complex and time-consuming, we separate the learning process into two

phases. In the first phase, we learn the sub-controllers completely such that the agent can explore

the whole environment by moving between subgoals. In the second phase, we learn the meta-

controller and the sub-controllers altogether. The performance of the second phrase is averaged

through three runs of 100000 episodes.
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Figure 4.10: Comparing the hDRQN algorithms with some baseline algorithms on the domains of
multiple goals in gridworld
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Figure 4.11: Comparing the hDRQN algorithms with some baseline algorithms on the domains of
multiple goals in four-rooms
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4.5.2 Results and Discussions
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Figure 4.12: Comparing the hDRQN algorithms with some baseline algorithms for the Mon-
tezuma’s Revenge game

The performance of the proposed algorithms compared to the baseline algorithms is shown

in Figure 4.12. DQN reported a score of zero, which is similar to the result from [27]. DRQN,

which can perform well in a partially observable environment, also achieved a score of zero

because of the highly hierarchical complexity of the domain. hDQN can obtain scores on this

domain. However, it cannot perform well in a partial observability setting. The performance of

hDQN in a full observability setting can be found in the paper of Kulkarni [44]. Our proposed

algorithms can adapt to the partial observability setting and hierarchical domains as well. The

hDRQNv2 algorithm shows a better performance than hDRQNv1. It seems that the difference in

the architecture of the two frameworks (described in Section 3.2) has affected their performance.

Particularly, using internal states of a sub-controller as the input to the meta-controller can give

more information for prediction than using only raw observations. To evaluate the effectiveness

of two algorithms, we report the success ratio for reaching the goal “key” in Figure 4.13a and

the number of time steps the agent explores each subgoal in Figure 4.13b. In Figure 4.13a, the

agent using the hDRQNv2 algorithm almost picks up the “key” at the end of the learning process.

Moreover, Figure 4.13b shows that hDRQNv2 tends to explore more often for subgoals that are on

the way to reaching the “key” (E.g. top-right-ladder, bottom-right-ladder, and bottom-left-ladder)
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while exploring less often for other subgoals such as the left door and the right door. Figure 4.14

demonstrates a sample gameplay of Montezuma’s Revenge game and is interpreted as follows.

At (1), the meta-controller picks top-right-ladder as subgoal and the sub-controller let the agent

go to the current goal. After the agent reach top-right-ladder at (2), the meta-controller picks the

next subgoal at (3) which is bottom-right-ladder. At (3), the sub-controller let the agent go down

to the bottom-right-ladder. Similarly, the controller executes a sequence of picking subgoals and

obtaining subgoals: (4)(5)(6)(7)(8)(9)(10)(11). The agent hits the skull at (11) and is died at (12),

thus, the subdomain (the option) is terminated (12) and agent select another subgoal at (13). At

(13), the meta-controller picks right-door as the subgoal and the sub-controller let the agent move

to the right-door. The domain is completed after the agent reaches the right-door at (14).
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Figure 4.13: Some metric on Montezuma’s Revenge
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Chapter 5
Conclusion and Future Works

5.1 Conclusion

In the field of reinforcement learning, hierarchical reinforcement learning is still a challenging

topic due to the complexity of domains. Moreover, hierarchical reinforcement learning has in-

creased the challenge by evaluating hierarchical domains under partial observability. Over the last

decade, many approaches are proposed to overcome the difficulty in HRL. However, they are still

stuck on highly hierarchical domains due to simply representing policy. Recently, deep learning is

applied to hierarchical reinforcement learning and got remarkable achievements. The deep neural

network allowed to represent highly complex policy, is integrated to hierarchical reinforcement

learning and is expected to solve highly complex domains.

In this dissertation, we introduced a new hierarchical deep reinforcement learning algorithm.

The algorithms can solve Montezuma’s Revenge game under partial observability. The algorithms

have some features described as follows:

• Proposed algorithms learn frameworks for both full observability (MDP) and partial observ-

ability (POMDP).

• The algorithms take advantage of deep neural networks to produce hierarchical policies that

can solve domains with a highly hierarchical nonlinearity

• The algorithms integrate LSTM allowed learning data efficiently and better convergence.

• The algorithms employ several advanced methods in deep reinforcement learning such as

Double DQN and Dueling architecture. Their techniques have been proved to help better

convergence.

73
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We showed that the proposed frameworks perform well when learning in hierarchical POMDP

environments.

5.1.1 Applicable areas of our proposed algorithms

Naturally, applicable domains of proposed algorithms appear in form of multiple subdomains.

This section introduces several applicable areas of proposed algorithms as follows:

Games Computer games are used in many studies to evaluate hierarchical reinforcement learn-

ing algorithms. The context is that the agent with a limited vision must explore the environment

and do some dependent tasks. Some examples such as:

• Minecraft: The agent with limited vision explores the map from room 1, navigates to a

block from room 2, picks up the block and place it to room 3 [94].

• Startcraft: Our proposed algorithms can fit to some tasks such as CollectMineralsAndGas

or BuildMarines which are defined and implemented by Goodle DeepMind [28]. The agent

starts with a limited base and is rewarded for the total resources collected in a limited time.

A successful agent must build more workers and expand to increase its resource collection

rate.

• DotA 2: The game has been actively developed for over a decade, with game logic imple-

mented in hundreds of thousands of lines of code. This logic takes milliseconds per tick

to execute, versus nanoseconds for Chess or Go engines. OpenAI is in progess to build

agents which can reach the human level. They train their agent using PPO on 256 GPUs

and 128,000 CPU cores [95]. This game appears in form of a complex hierarchical task

which the agent (hero) does some subtasks simultaneously such as farming, navigating, and

killing. So, we expect our proposed algorithms can fit with some scenarios of this games.

• League of Legends: Similar to DotA 2, this game is a very complex video game. However,

it can be considered as a hierarchical tasks and can be applied by hierarchical algorithms

such as our proposed algorithms.

Robotics Robotics is another area to which we can apply our proposed algorithms. The robots

with limited sensors only observe a limited range of a environment. Even though the robot can
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observe the complete state, the noise or disturbance from physical sensor also forms the POMDP

domains. Under such contexts, the agent needs to explore the environment and does some hierar-

chical tasks. Some real-applications are shown as bellow:

• Navigation Task: the trajectorie is decomposed into multiple smaller trajectories and the

robot completes smaller trajectories one-by-one until completed the whole trajectories [96].

• Reacher Task: a manipulator automatically finds the best trajectory to reach a specified goal.

We can use our proposed algorithms to control the manipulator so that the manipulator reach

multiple subgoals which is on the way to the final goal [97].

5.2 Future Works

Even though the proposed algorithms show their efficiency with hierarchical domains under

POMDP, they contain several drawbacks. Solving these drawbacks will open new directions for

this topic. In addition, the proposed algorithms have the potential to be extended to other topics.

The details of future works are explained in sections below:

5.2.1 Multiple Levels of Hierarchy

Developing a framework of two levels of controllers somehow limits the ability of the framework

to solve hierarchical task having more than two levels of hierarchy. Most studies also propose

the framework of two levels of policies in term of master/worker [40] [43] or policy/“policy over

option” [37]. There has no study which discusses the number of levels of hierarchy. Therefore,

developing a framework which can have an adaptive number of levels of controllers is expected to

deal with any hierarchical domains.

5.2.2 Subgoal Discovery

In order to simplify the learning problem in the hierarchical POMDP, we assumed that the set of

subgoals is predefined and fixed because the problem of discovering a set of subgoals in POMDP

is still a difficult problem. Assuming a set of predefined subgoals is not natural under partial

observability because it requires a priori knowledge which breaks the assumption about partial
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observability. Even though the domain is under full observability, selecting subgoals among states

is still a hard problem due to the curve of dimensionality. Finding an algorithm, which allows

to discovery and obtains subgoals simultaneously, is encouraged to remove the assumption about

predefined subgoals. Some studies [39] [98] [46] [99] [100] have been first novel ideas the way to

explore this topic.

5.2.3 Hierarchical Multi-agent Domains under Partial Observability

A

B

C

D

3 possible  
routers 

communication 
range 

(a) Multiple taxies co-operate to
pick up and take off passengers

(b) Half Field Offense (A team of
robots co-operates to score under the
defense of another team)

(c) Multiple robots do a hierarchical
tasks in a factory

Figure 5.1: Some hierarchical multi-agent domains

Proposed algorithms can be extended by applying it to hierarchical multi-agent problems un-

der partial observability. For example, multiple taxies (Figure 5.1a) perform hierarchical tasks of

picking up and taking off the passengers. However, each of them only observes and communicate

with other taxies within a range (POMDP). We expect the hDRQNs combined with some com-

munication strategies can help each agent efficiently cooperate with other agents to maximize the

cumulative reward of the hierarchical tasks under partial observability. Some studies have focused

on either a team of agent solves hierarchical tasks under full observability [98] [101] [102] [103]

or a team of agent solves a single task under partial observability [104] [105] but there was no

study that learns a team of agents to solve hierarchical tasks under partial observability. This is the

change for us to propose great ideas.
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