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Reinforcement Learning Sy BN

Reinforcement Learning

An area of Machine Learning concerned with how software agents take
actions in an environment so as to maximize cumulative reward.
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Machine Learning &y B

@ We can answer the 4 major questions:
» How much/How many?
» Which category?
» Which group?
» Which action?
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How much / How many?

@ What will be the temperature
tomorrow?

@ What will be my energy costs
next week?

@ How many new user will visit
next month?

= Regression

Tuyen P. Le (Al Lab) Deep Hierarchical RL Algorithms in POMDPs Ph.D. Dissertation Defense 6/61



Which category? & Za
> Tre

@ Is there a cat or a dog on the
image?
@ Which emails are spam emails?

@ What is the category of this
news article (finance, weather,
entertainment, sport, ...)?

= Classification
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Which group? &y Bads=

@ Which customers have the same
favorite product?

@ Which visitors like the same
movie?
@ Which documents has the same
topic?
= Clustering
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Which action? Gy BAHEta

@ Should | rise or lower the
temperature?

@ Should | break or accelerate?

@ What is the next move for this
Go match?

= Reinforcement Learning (RL)
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RL application areas & Za
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Figure: Rich Sutton. Deconstructing Reinforcement Learning. ICML 09
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Era of Deep Reinforcement Learning
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Challenge 1

Video Pinball
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Hierarchical Task

DQ@N as well as plain DRL algorithms
fails to solve the task having multiple
subtasks (hierarchical task) such as

Montezuma's Revenge in Atari Game
2600

Montezuma's Revenge Game
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Challenge 2 Gy BAHEta
Partial Observability

@ Most of studies assume that an agent can observe the environment
states fully (MDP)

@ However, it does not reflect the nature of real-world applications,
where the agent only observes a partial states (POMDP )

RUN?

@_OO

£

Figure: The agent takes the action under partial observability

~ — JUMP?

\

GO DOWN?
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Proposed Concept Gy B2

We want to propose a deep HRL
algorithm for solving hierarchical
tasks under partial observability

@ The proposed frameworks
employ deep neural network as
policies.

observation

@ The proposed frameworks use
limited observations to make
decisions.

observes

@ The proposed frameworks can
solve hierarchical tasks

environment
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Thesis Contributions Gy BAHEta

@ Develop: hierarchical Deep Recurrent Q-Learning algorithms
(hDRQNs) in order to handle hierarchical tasks in POMDP.
Particularly,

» We develop hDRQNv1 algorithm which learns a framework of
hierarchical polices.
* Two levels of hierarchical polices: meta-controller is the upper policy
and sub-controller is the lower policy.
* Two hierarchical policies integrated recurrent neural networks are
expected to overcome the challenges under partial observability
» We develop hDRQNV2 algorithm of a proposed framework which
integrates recurrent neural networks in a different way, thus expected
to have better performance.

@ To the best of our knowledge, our research is the first study that
learns Montezuma's Revenge under partial observability.
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Background and Related
Work
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Background and Related Work &y 2aea

Reinforcement learning (Markov Decision Process)

Hierarchical reinforcement learning (Semi Markov Decision Process)

Planing under partial observability (Partial Observation Markov
Decision Process)
Related works:

» Deep Q Networks (DQN)
» Deep Recurrent Q Network (DRQN)
» Hierarchical Deep Q Network (hDQN)
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Markov Decision Process (MDP) Ly 2o
@ RL can be formalized as a MDP with five elements {S; A; r; P; v}

» S state space

» A action space

state| |reward . .
s | |& geton » r: S x A — R reward function
T

v

Rey
S| Environment [«—— P(s'|s, a) transition dynamics

» v discount factor
e Markov property: P(sty1|s1,1,---,St,at) = P(St+1]5t, at)
@ A policy 7 is a map from state to action. E.g.
» Deterministic policy: a = 7 (s)
» Stochastic policy: m(a|s) = Pla; = a|s; = s]

Goal of RL

Find an optimal policy ™ in order to maximize the expected discounted

reward: J(r) =E [io: ’yt_lr(at,st)}
t=1

Tuyen P. Le (Al Lab) Deep Hierarchical RL Algorithms in POMDPs 1l H DR DIEE il 1B IS T 20/61



Partial Observation &y B
Markov Decision Process (POMDP)

@ Agent observes the entire environment — MDP
@ Agent only observes a part of environment — POMDP
@ POMDP is popular in the real-world applications. E.g.
> A robot with camera vision isn't told its absolute location
» A trading agent only observes current prices
> A poker playing agent only observes public cards

(a) Robot Navigation (b) Trading Bot (c) Poker Bot

Some POMDP domains
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Partial Observation Y B2
Markov Decision Process (POMDP)

@ POMDP is defined as a tuple of six components {S, A, P, r,Q, Z}
» S, A, P, r are the state space, action space, transition function and
reward function, respectively, as in a MDP.
» Q and Z are the observation space and observation model, respectively
@ The agent cannot observe the whole environment, thus, maintain a
hidden state b called belief state

Definition
Belief state defines the probability of being in state s according to its
history of actions and observations; and can be updated using the Bayes
rule:

b(s") x Z(o|s', a) ZP(S’|5, a)b(s).

seS

v

@ Updating belief state require a high computational cost and expensive
memory — take advantages of RNNs
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Semi Markov Decision Process (SMDP)  <¢§7 Z2aH%u

@ Hierarchical tasks are popular in real-world applications. E.g.
» An agent navigates to the key before reaching the door to open.
» Tasks of a taxi: go to to the passengers, pick up, go to to the
destination, take off.

> A robot plans to go to the door before going to the destination.

} subgoals

N
18 primitive actions

(a) Montezuma's  (b) The hierarchy of Montezuma's Revenge do-
Revenge main

Hierarchical Domain

@ SMDP is an extensional theory of MDP, was developed to deal with

challenges in hierarchical tasks.
Tuyen P. Le (Al Lab) Deep Hierarchical RL Algorithms in POMDPs 1l H DR DIEE g il 1B IS T 23 /61



SMDP = Options + MDP LY B
e SMDP = Options over MDP.

Definition

An option & € = is defined by three elements:
MDbP [ State
/\/\/ @ An option’s policy T,

o N\ e A termination condition [3
Options j/w @ An initiation set T C S denoted as the set
over MDP w)

of states in the option

@ A policy over options p(§|s) is introduced to select options

@ An option is executed as follows:
» Under option &;, state s;, the action a; is

selected based on 7 . w‘
» The environment transits to state sy4; 5:; Sy 53

» The option executes until state s; ;3
. . S+l K St-
» The next option is selected &;13 = u(st43) Sy " sus
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Deep Reinforcement Learning (1) &y 2aea
@ Deep Q Learning (DQN) for Atari Games

» End-to-end learning of values Q(s, a) from raw pixels
Input state s is stack of raw pixels from last 4 frames
Output is Q(s, a) for 18 joystick/button positions
Hidden layers are the combination of CONV, FC, ReLU
Stabilization techniques:

* Experience replay.

* Delayed target network.

32 4x4 filters 256 hidden units Fully-connected linear
output layer

vVYyVvyy

Stack of 4 previous - Fully-connected layer
frames Convolutional layer Convolutional layer of rectified linear units
of rectified linear units of rectified linear units

@ Other tricks:
» Double Deep Q Learning (DDQN)
» Dueling network

> Prioritized repla
Tuyen P. Le (Al Lab) Deep Hierarchical RL Algorithms in POMDPs 1l H DR DIEE g il 1B IS T 25 /61




Deep Reinforcement

Q-Values

LSTM

/ 512
64

Conv3
64-filters
3x3
Stride 1
7

Conv2
64-filters
Ax4 64
Stride 2
9
9
Convl
] 32-filters 32
U 8x8
Stride 4 20

20 .
= / 7 84
L < 1

Learning (2)

(POMDP)

@ Other tricks combining with DRQN [6]:
» Updating DRQN techniques: Bootstrapped Sequential Updates vs

Bootstrapped Random Updates

6,

Fo|got
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@ Limitations of DQN and its derivations:

» Only learning from a limited number
of past states (last 4 frames)
? » Cannot deal with POMDP domains

@ Deep Recurrent Q-Network(DRQN) [6]:

» A combination of a Long Short Term
Memory (LSTM) and a DQN
» Better handles the loss of information

> lIgnore first observations in a sequence of transitions when updating the

Q value function

Tuyen P. Le (Al Lab)
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Deep Reinforcement Learning (3) &y 2aea

action [ Extemal | observations e hDQN framework [3]
Environment
lextrinsic » Two levels of controllers: meta controller
reward and controller
Viota » The meta controller produces a subgoal.
Controller » The controller performs primitive actions
goal to obtain the subgoal.
i > The set of subgoals is predefined and fixed.
» The meta controller and the controller are
action intrinsic built from DQN networks
i » Extrinsic is reward of the meta controller
Controller and intrinsic is reward of the controller
i » Only deal with fully observable domains

@ Others:

» Option Critic framework [1] and Feudral framework [2]
» Discovering subgoals [4]
» Adaptively finding a number of options [5]
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Proposed Methodologies
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hDRQN: Key Terminologies (1) Gy A

Subdomain ()
@ A domain = multiple subdomains.

@ A subdomain < an option £.

E.g. Domain: Montezuma's Revenge.
Subdomains: move to the left door, move to
the key, ...

Subgoal (g)
Each subdomain has a subgoal g € Q2 \

E.g. White rectangles (left image) Figure: Montezuma'’s Revenge

Observation (o)

A partial of the environment (o € Q) which the agent can observe

E.i. The iixels around the agent (right image)
Tuyen P. Le (Al Lab) Ph.D. Dissertation Defense 29 /61




hDRQN: Key Terminologies (2) Gy A

Meta-controller (META)

Equivalent to a “ policy over subgoals” that
receives the current observation o; and
determines the new subgoal g;

o E.g. In Montezuma's Revenge, META

is used to select new subgoal.
Figure: Montezuma's Revenge

Extrinsic Reward (re)
Use to evaluate the goodness of META. J

o E.g. In Montezuma's Revenge, r® =1 if agent obtains the key or
opens the doors, otherwise 0

Tuyen P. Le (Al Lab) Ph.D. Dissertation Defense 30/61



hDRQN: Key Terminologies (3) Gy A

Sub-controller (SUB)

Equivalent to the option’s policy, which
directly interacts with the environment by
performing action a;

@ E.g. In Montezuma's Revenge, SUB
controls the agent to move between

subgoals. Figure: Montezuma's Revenge

Intrinsic Reward (r'™)
Use to evaluate the goodness of SUB.

e E.g. In Montezuma's Revenge, r'" = 1 if agent obtains the subgoal,
otherwise 0

Tuyen P. Le (Al Lab) Ph.D. Dissertation Defense 31/61



hDRQN: Framework 1

ACTION

ACTION

M META
CONTROLLER

A

INTRINSIC
REWARD

EXTRINSIC
REWARD

A

>
>

ENVIRONMENT

OBSERVATIO!

Tuyen P. Le (Al Lab)

o hDRQNv1:;

Ly 2aHad

KYUNG HEE UNIVERSITY

> Inspired by hDQN framework [3]
» Build on two deep recurrent neural policies.
> Input is a single frame (hDQN uses 4 frames)

0" (0, g16")

O ((ong)ale®)  Q(owi.g}.al0%)

0" (0. 810")

META
CONTROLLER
Q°({0rsk.81),al6)

sus s suB s
CONTROLLER | ™ J| CONTROLLER | "t

T Orvk
suB .
CONTROLLER |+

I S T

o o

1

Ok
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hDRQN: Framework 1 (Extendedl Yy Bataa
META:

@ Input: Observation o
‘ @ Feature extraction: 4 CONV
E layers and RelLU layers.
@ LSTM is integrated in front
of the features.

The output of LSTM is put
into Dueling network ([7])

[e=ISto)

input

\SUB CONTROLLER

INTRINSIC

ACTION

CRITIC

Ivoosns
[

@ Output: Q subgoal values
QM(o,g)
SUB:

@ Input: Observation o and
current subgoal (g)

@ Other part: same as META

S ENVIRONMENT D — -] Output: Q action values

S
Q>({o, g}, a)
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hDRQN: Framework 2 Gy BAHEta

..................... o hDRQNv2

' AGENT:
! S T . .
' ” ' ! > An improved version of hDRQNv1
1 1 . .
" sus ——t Input of META is the internal states of LSTM
[ CONTROLLER s [
1 ' H
' VTS ‘ layer in SUB
' REWARD :
|
1 1

CRITIC 1
| ACTION - 1

'
: SUB oA ! 2", ¢10") Q.10
HG META ¢ '
1 CONTROLLER ! [ am_ ]
META
: ‘\ H J
--------------------- ! O'((ong)al6®) O ({ou.g}.ale®) {orske g,me)
EXTRINSIC
REWARD B
= S E
CONTFL(J(‘;LLER @ CONTI;JSLLER CONTROLLER
> ENVIRONMENT
ACTION | OBSERVATION 0 T i T x T
o o ot
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hDRQN: Framework 2 (Extended) ¢y Bt

OBSERVATION

observes

input

hDRQNv2 ™~
N

META:
@ Input: hidden states from
SUB h°

@ Feature extraction: Three

fully connected layers and
ReLU layers.

avooans

@ Other part has the same
architecture as META of
framework 1

SUB:

EXTHINSIIC
—_—
'
'
'

@ Same architecture as SUB of
framework 1

—

ENVIRONMENT

‘ ACTION
«—

Tuyen P. Le (Al Lab)
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hDRQN: Q values Gy BAHEta

e META Q subgoal values:
!, QY (or, ge) = FM (M, hiY,)
e SUB Q action values:
h, Q>({or, ¢}, ac) = F2(9°, h7_y)

@ Where:

» M and f5 are the recurrent networks of the META and SUB.
» hM and h? are internal states constructed by recurrent networks.
» ®M and &5 are the features of META and SUB.

oM _ fextract(ot) framework 1
- fextract(pS)  framework 2

PSS = fextract(ot’gt)

» At is neural networks to extract features from input (E.g. CONV,
FC, RelU, ...)

Tuyen P. Le (Al Lab) Deep Hierarchical RL Algorithms in POMDPs 1l H DR DIEE g il 1B IS T 36 /61



hDRQN: Learning META &Sy Botn

@ Optimizing META by minimizing loss functions:

LY =E(o 0,00 g recyrtta [y — QY (0, )]
o Where:
» yM is target values of META

.yiM =r& + ’YQM/(OI, argmaxg’ QM(Olu gl))
@ Minibatch Sampling Strategy: Bootstrapped Random Updates [6].

subgoal

extrinsic reward al

SUB-CONTROLLER ENVIRONMENT

observation

<01.g1 00Tt >

< 02,82,03,75" >

< 0y 8O T

+. Experience Replay
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hDRQN: Learning SUB G2
@ Optimizing SUB by minimizing loss functions:
LS = E(o,g,a,ri”)w,/\/ls [y,s — QS({O,g}, 3)]

o Where:
» y? are target values of SUB

y? =r"+ Q% ({0, g},argmax, Q5({o’, g}, "))
e Minibatch Sampling Strategy: Bootstrapped Random Updates [6].

action
N
intrinsic reward
observation CRITIC
PR Saiutel el il Attty Rttty ==~
N / Network "\ M
' '
' S '
' 0 poLicY |
' '
V[ <tonaiban o g} > H
' GRADIENT |
i <{ox.gihax{o3,81}.15" > il
' '
' 7] Batch \ / H
' '
' '
1| <Aon.8mban, {on1.gm ol > '
! Experience Replay !
. Sub-controller .’
subgoal

META-CONTROLLER
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hDRQN: Sampling Strategy Sy BN
@ Bootstrapped Random Updates [6] is compatible with recurrent
neural networks:
» Randomly selects a batch of episodes from the experience replay
» For each episode, we begin at a random transition and select a

sequence of n transitions
» For each controller, we have n" (META) and n° (SUB)

select 3 transitions selected transitions

Experience Replay — to compute loss function

00-O 1RO @]
IIl:I. /{@@@'s:: D@ @@@
[CO-O
[eleRe](

\[elelclalelele) 6l6]0)

Randonly select a batch of N traijectories

Figure: Bootstrapped Random Updates
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hDRQN: Pseudo code

Algorithm 1 hDRQN in POMDP
Require:
1: POMDPM = {S, A, P,r, Q, Z}

2: Meta-controller with the network Q™ (main) and Q™'
(target) parameterized by 6 and 6™ ' respectively.
3: Sub-controller with the network @5 (main) and QS’
(target) parameterized by 6% and 6%, respectively.
4: Exploration rate €M for meta-controller and €° for
sub-controller.
s: Experience replay memories MM and MS of
meta-controller and sub-controller, respectively.
: A pre-defined set of subgoals G.
7: fM and £ are recurrent networks of meta-controller and
sub-controller, respectively.
Ensure:
8: Initialize:
« Experiences replay memories MM and M5
« Randomly initialize 6™ and 6%
« Assign value to the target networks 6 "« oM and
65 0
o € « 1.0 and decreasing to 0.1
o €5 < 1.0 and decreasing to 0.1
9: fork=1,2,...K do
10:  Initialize: the environment and get the start observa-
tion o

=

Tuyen P. Le (Al Lab)

g(.‘) 716 [HUI'

KYUNG HEE UNIVERSITY

11:  Initialize: hidden states 4 < 0
12:  while o is not terminal do
13: Initialize: hidden states 45 < 0
14: Initialize: start observations oy < o where o car
be observation o or hidden state 75
15: Determine subgoal: g, hM «
EPS_GREEDY (0, ™, G, €M, M, fM)
16: while o is not terminal and g is not reached do
17: Determine action: a, h5 «
EPS_GREEDY ({o, g}, K5, A, €5, 05, f5)
18: Execute action a, receive reward r, extrinsic
reward r, intrinsic reward r™, and obtain the
next state s
19: Store transition {{0, g}, a, ™, {0/, g'}} in MS
20: Update sub-controller
SUB_UPDATEM?®, 05, 0%")
21: Update meta-controller
META_UPDATE(M™M , QM oM")
22: Transition to next observation o < o
23: end while
24: Store transition {ao 8 Txa» 0} In M5 where &
can be observation o or the last hidden state hS
25 end while
26:  Anneal € and %
27: end for

Deep Hierarchical RL Algorithms in POMDPs

Ph.D. Dissertation Defense 40 /61
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Experiments and Results
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Experiments Gy Boueis

@ Domains:

» Multiple goals in gridworld.
» Multiple goals in four-rooms.
» Montezuma's Revenge.

EI- I-'E'EL |-

Figure: Domains

@ Implementation details:
» Tensorflow.
The inputs of META and SUB are a raw image of size 44 x 44 x 3
Feature size is 256
Input and output of LSTM have 256 values.
Using ADAM to optimize the controller's parameters
Learning rate is 0.001
Discount factor is 0.99

Tuyen P. Le (Al Lab) Deep Hierarchical RL Algorithms in POMDPs 1l H DR DIEE g il 1B IS T 42 /61
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Domain Description (1) Y B

@ Multiple goal in Gridworld:

» Gridworld map of size 11 x 11.

» 4 types of objects: an agent (in black), two
obstacles (in red) and two goals (in blue and
green) or three goals (in blue, green and cyan)

» Objects are randomly located on the map

» Four actions: top, down, left or right.

@ Reward:
> Proper order: blue = green (two goals) or blue = green = cyan
(three goals)
1 for each reached goals in proper order

» Classical reward: r = ]
—1 hit the obstacle

1 obtain the goal

> Intrinsic reward: r" = .
—1 hit the obstacle

1 for each reached goal in proper order

0.01 otherwise
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Domain Description (1) Y B

@ Multiple goal in Four-rooms:

» Four-rooms map of size 11 x 11.

» 4 types of objects: an agent (in black), two
obstacles (in red) and two goals (in blue and
green) or three goals (in blue, green and cyan)

» Objects are randomly located on the map

» Four actions: top, down, left or right.

@ Reward:
> Proper order: blue = green (two goals) or blue = green = cyan
(three goal)
1 reach goals in proper order

» Classical reward: r = ]
—1 hit the obstacle

1 obtain the goal

> Intrinsic reward: r" = .
—1 hit the obstacle

1 reach goals in order

0.01 otherwise
Tuyen P. Le (Al Lab) Deep Hierarchical RL Algorithms in POMDPs 12l H DR DIEE =il 1B IS T 44 /61

» Extrinsic reward: r& =




Domain Description (1) Y B

@ Montezuma's Revenge:
» One of the hardest games in ATARI 2600
» DQN achieved a score of zero
» We use OpenAl Gym to simulate this domain
» To pass through the doors, first, the agent needs
to pick up the key.
» Agent observes an area of 70 x 70 pixels

@ Reward:
» Classical reward: The agent will earn 100 points after it obtains the key
and 300 after it reaches any door
> Intrinsic reward:

in _

1 reach subgoal
0 otherwise

» Extrinsic reward:

rex —

1 obtain key or open door
|0 otherwise
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Experiments Gy Boueis

o Experiment 1: Evaluate on different values of "™ and n°.
» Two goals in Grid World
» Effect of n®
» Effect of n™

@ Experiment 2: Evaluate on different levels of observation.
» Two goals in Grid World

3 x 3 observable agent

5 x 5 observable agent

Fully observable agent

@ Experiment 3: Compare performance of hDRQNv1, hDRQNv2 with:
» Flat algorithms (DQN, DRQN)
» Hierarchical algorithm (hDQN)

@ Experiment 4: Montezuma's Revenge

» Successful rate of reaching key
» Number of times to visit the subgoals

vvYyy
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Experiment 1: Effect of n° (1)
@ Report of hDRQNv1 with different n® (2,4,8,12)

150 W sub2
—subd
- b8
100 WM sub-12

25 50 75 100 125 150 175
Timesteps*100

(c) Reward

6 o2
I

- b
12 - b2

0 25 5 75 100 125 150 175
Timesteps*100

(e) Extrinsic

Tuyen P. Le (Al Lab)

075 W sub-12

0 25 5 75 100 125 150 175
Timesteps*100

(d) Intrinsic

- sub2
- subd
- sub8
- sub-12
0 25 50 75 100 125 150 175
Timesteps®100

(f) Steps

Deep Hierarchical RL Algorithms in POMDPs

Fixed nM =1
Perform well with a
big n° (8,12)
Performance

S

decreases when n- is
decreased

Only a little
difference in
performance between
8 and 12

Intuitively, LSTM in
SUB needs a long
sequence of

transitions
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Experiment 1: Effect of n°(2)
@ Report of hDRQNV2 with different n° (2,4,8,12)

Reward

175
1.50
125
E100
H

® 075

050

- sub-2

0 25 50 75 100 125

(g) Reward

- sub-2
- sub4
- sub-8
- sub-12

125

75
Timesteps*100

(i) Extrinsic
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150

Reward

- sub2
075 mmm sub4
- sub8
- sub-12

0 25 50 75 100 125 150 175
Timesteps*100

(h) Intrinsic

- sub-4
- sub-8
- sub-12

0 25 50 75 100 125 150 175
Timesteps*100

(j) Steps

Deep Hierarchical RL Algorithms in POMDPs

@ KYUNG HEE UNIVERSITY

@ Fixed 'M =1

@ Same behavio
as hDRQNv1
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Experiment 1: Effect of n"
@ Report of hDRQNv1 and hDRQNv2 with different n™ (1, 2)

15
10
]
- s
& os —
@ Fixed n°> =8
B hDRQNvI meta-1 B hDRONVI meta-1
00 == hDRQN2 mela-1 o0 B hDRONV2 meta-1 .
. HDRONv1 meta-2 == hDRONVI meta-2 ] W|th h DRQNV]_
. hDRONV2 meta-2 075 = hDRONV2 meta-2 !

0 25 50 75 100 125 150
Timesteps*100

(k) Reward

175 WEE hDRQNv1meta-1

W hDRQNV2 meta-1
150 =W hDRQNvimeta-2
W hDRONv2 metaz2(]

0 25 50 75 100 125 150
Timesteps*100

(m) Extrinsic
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0 25 50 75 100 125 150 175
Timesteps*100

(1) Intrinsic

W= hDRQNv1 meta-1
== hDRQNv2 meta-1
mN hDRQNv1 meta-2
W hDRQNV2 meta-2

0 25 50 75 100 125 150 175
Timesteps*100

(n) Steps

Deep Hierarchical RL Algorithms in POMDPs

M — 1 is better
than n™ =2

e With hDRQNv2,
the performance
is the same at

both settlngs nM
=1land M =2
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Experiment 2: Effect of different levels of ¢y 2%

observation

@ Performance of the agent with a larger observation area is better than

the agents with smaller observing abilities

@ The performance of a 5 x 5 observable agent using hDRQNv2 seems

to converge faster than a fully observable agent

1.8 EEE hDRQNv1 obs-3
hDRQNvV2 obs-3
14 hDRQNv1 obs-5

hDRQNvV2 obs-5

o2 EEE hDRQNv1 obs-full
21, W""\/V’/W_
510 AT EEE hDRQNV2 obs-full

308
v
0.6
0.4
02
0.0

1.6

0 20 40 60 80
Timesteps*1000
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Experiment 3: Performance Comparison (1 Fogictu
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o Multiple goals in gridworld
» The hDRQN algorithms outperforms the other algorithms
» hDRQNvV2 has the best performance
» The hDQN algorithm has poor performance in POMDP domains

I hDRQNv1 hDRQNv1
mmm hDRQNv2 hDRQNv2
= hDQN hDQN
s DON DQN

° N DRQN ° N DRQN

B B

g L

0 50 100 150 0 100 200 300 400
Timesteps*100 Timesteps*100
(o) Two goals in Gridworld (p) Three goals in Gridworld
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Experiment 3: Performance Comparison ( Zo|ujstu
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@ Multiple goals in four-rooms
» Same behavious as in Gridworld

== hDRQNv1 20 = hDRQNvV1
N hDRQNv2 N hDRQNv2
= hDQN 15 == hDQN
= DON == DON
. DRQON - 1.0 EEE DRQON
g
g o5
0.0
-05
0 100 200 300 400 0 20 40 60 80
Timesteps*100 Timesteps*1000
(q) Two goals in Four-rooms (r) Three goals in Four-rooms
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Montezuma’s Revenge (1) Y B

@ DQN reported a score of zero

@ DRQN also achieved a score of zero because of the highly hierarchical
complexity of the domain

@ hDQN can achieve a high score on this domain

@ The hDRQNvV2 algorithm shows a better performance than hDRQNv1
= Difference in the architecture of two frameworks has affected their

performance
350 EEE hDRQNvV1
EEE hDRQNv2
300 === hDQN
250 m= DQN
- = DRQN
5 200
3
r 150
100
50 /\/\
A\
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Experiment 4: Montezuma'’s
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Revenge (2) Y

@ The agent using the hDRQNv2 algorithm almost picks up the “key”

at the end of the learning process

o hDRQNv2 tends to explore more often for subgoals that are on the
way to reaching the “key” (E.g. top-right-ladder,
bottom-right-ladder, and bottom-left-ladder)

@ Exploring less often for other subgoals such as the left door and right

door
1.0
3.0
0.9
25
0.8
e
‘g 2.0
3 @
& 0.7 g 15
IS
0.6
1.0
0.5 05
0 20 40 60 80 100 0.0
Episodes*100

(s) Success ratio
Tuyen P. Le (Al Lab)

i

Deep Hierarchical RL Algorithms in POMDPs

. left-door
right-door
top-right-ladder
bottom-right-ladder

W bottom-left-ladder

. key

4000 8000

Episodes

12000

(t) Number of visits subgoals
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Demo
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https://youtu.be/r2wQiOc6euE
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Conclusions and Future
Works
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Conclusions Gy BAHEta

o Implemented: new hierarchical deep reinforcement learning
algorithms (hDRQNs)
» For hierarchical tasks
» For both MDP and POMDP tasks
» Takes advantage of deep neural networks (DNN, CNN, LSTM)
@ Proposed: a new way to integrate LSTM into the learning framework,
which allows to learning data efficiently and better convergence.
o Employed: several advanced methods in deep reinforcement learning;:
Double Q Learning
Deep Recurrent Q Network

Dueling Q Network
Bootstrapped Random Updates

v

vV vy
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Future works Gy BAHEta

o Improved: our framework by tackling those problems:
» Our framework is hard to scale for domains with more than two levels

of hierarchy
» Discovering a set of subgoals in POMDP is still a difficult problem.

o Considered: to apply hDRQN to multi-agent systems where the
environment is partially observable and the task is hierarchical

(u) Multiple taxi  (v) Half Field Offense (A (w) Multiple robots do a
co-operate to pick  team of robots co-operates  hierarchical tasks in a fac-
up and take off  to score under the defense  tory

passengers of another team)

Figure: Some hierarchical multi-agent-domains
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Thank You!
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