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Introduction
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Reinforcement Learning

Reinforcement Learning

An area of Machine Learning concerned with how software agents take
actions in an environment so as to maximize cumulative reward.

Environment

Agent
A
ct
io
n

Interpreter

Reward

State
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Machine Learning

We can answer the 4 major questions:
I How much/How many?
I Which category?
I Which group?
I Which action?
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How much / How many?

What will be the temperature
tomorrow?

What will be my energy costs
next week?

How many new user will visit
next month?

⇒ Regression
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Which category?

Is there a cat or a dog on the
image?

Which emails are spam emails?

What is the category of this
news article (finance, weather,
entertainment, sport, . . . )?

⇒ Classification
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Which group?

Which customers have the same
favorite product?

Which visitors like the same
movie?

Which documents has the same
topic?

⇒ Clustering
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Which action?

Should I rise or lower the
temperature?

Should I break or accelerate?

What is the next move for this
Go match?

⇒ Reinforcement Learning (RL)
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RL application areas

Figure: Rich Sutton. Deconstructing Reinforcement Learning. ICML 09
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Era of Deep Reinforcement Learning

Figure: DQN in Atari Games

(a) Go game (b) Starcraft

(c) DotA (d) Poker

Figure: Domains which the agent defeats
human
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Challenges
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Challenge 1

Hierarchical Task

DQN as well as plain DRL algorithms
fails to solve the task having multiple
subtasks (hierarchical task) such as
Montezuma’s Revenge in Atari Game
2600

Montezuma’s Revenge Game
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Challenge 2

Partial Observability

Most of studies assume that an agent can observe the environment
states fully ( MDP)

However, it does not reflect the nature of real-world applications,
where the agent only observes a partial states ( POMDP)

RUN?

JUMP?

GO DOWN?

Figure: The agent takes the action under partial observability
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Proposed Concept
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Figure: Proposed Concept

We want to propose a deep HRL
algorithm for solving hierarchical
tasks under partial observability

The proposed frameworks
employ deep neural network as
policies.

The proposed frameworks use
limited observations to make
decisions.

The proposed frameworks can
solve hierarchical tasks

Tuyen P. Le (AI Lab) Deep Hierarchical RL Algorithms in POMDPs Ph.D. Dissertation Defense 15 / 61



Thesis Contributions
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Thesis Contributions

Develop: hierarchical Deep Recurrent Q-Learning algorithms
(hDRQNs) in order to handle hierarchical tasks in POMDP.
Particularly,

I We develop hDRQNv1 algorithm which learns a framework of
hierarchical polices.

F Two levels of hierarchical polices: meta-controller is the upper policy
and sub-controller is the lower policy.

F Two hierarchical policies integrated recurrent neural networks are
expected to overcome the challenges under partial observability

I We develop hDRQNv2 algorithm of a proposed framework which
integrates recurrent neural networks in a different way, thus expected
to have better performance.

To the best of our knowledge, our research is the first study that
learns Montezuma’s Revenge under partial observability.
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Background and Related
Work
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Background and Related Work

Reinforcement learning (Markov Decision Process)

Hierarchical reinforcement learning (Semi Markov Decision Process)

Planing under partial observability (Partial Observation Markov
Decision Process)

Related works:
I Deep Q Networks (DQN)
I Deep Recurrent Q Network (DRQN)
I Hierarchical Deep Q Network (hDQN)
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Markov Decision Process (MDP)

RL can be formalized as a MDP with five elements {S;A; r ;P; γ}

I S state space

I A action space

I r : S ×A → R reward function

I P(s ′|s, a) transition dynamics

I γ discount factor
Markov property: P(st+1|s1, a1, . . . , st , at) = P(st+1|st , at)
A policy π is a map from state to action. E.g.

I Deterministic policy: a = π(s)
I Stochastic policy: π(a|s) = P[at = a|st = s]

Goal of RL

Find an optimal policy π∗ in order to maximize the expected discounted

reward: J(π) = E
[ ∞∑
t=1

γt−1r(at , st)

]
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Partial Observation
Markov Decision Process (POMDP)

Agent observes the entire environment → MDP
Agent only observes a part of environment → POMDP
POMDP is popular in the real-world applications. E.g.

I A robot with camera vision isn’t told its absolute location
I A trading agent only observes current prices
I A poker playing agent only observes public cards

(a) Robot Navigation (b) Trading Bot (c) Poker Bot

Some POMDP domains
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Partial Observation
Markov Decision Process (POMDP)

POMDP is defined as a tuple of six components {S,A,P, r ,Ω,Z}
I S,A,P, r are the state space, action space, transition function and

reward function, respectively, as in a MDP.
I Ω and Z are the observation space and observation model, respectively

The agent cannot observe the whole environment, thus, maintain a
hidden state b called belief state

Definition

Belief state defines the probability of being in state s according to its
history of actions and observations; and can be updated using the Bayes
rule:

b′(s ′) ∝ Z(o|s ′, a)
∑
s∈S
P(s ′|s, a)b(s).

Updating belief state require a high computational cost and expensive
memory → take advantages of RNNs
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Semi Markov Decision Process (SMDP)
Hierarchical tasks are popular in real-world applications. E.g.

I An agent navigates to the key before reaching the door to open.
I Tasks of a taxi: go to to the passengers, pick up, go to to the

destination, take off.
I A robot plans to go to the door before going to the destination.

(a) Montezuma’s
Revenge

ROOT

LEFT
DOOR

RIGHT
DOOR ROPE KEY...

LEFT RIGHT JUMP DOWN... UP

subgoals

18 primitive actions

(b) The hierarchy of Montezuma’s Revenge do-
main

Hierarchical Domain

SMDP is an extensional theory of MDP, was developed to deal with
challenges in hierarchical tasks.
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SMDP = Options + MDP

SMDP = Options over MDP.

Definition

An option ξ ∈ Ξ is defined by three elements:

An option’s policy π,

A termination condition β

An initiation set I ⊆ S denoted as the set
of states in the option

A policy over options µ(ξ|s) is introduced to select options

An option is executed as follows:
I Under option ξt , state st , the action at is

selected based on π
I The environment transits to state st+1

I The option executes until state st+3

I The next option is selected ξt+3 = µ(st+3) st−1
st

ξt−1

ξt

ξt+3

st+1

st+2
st+3

st+4

st+5
st+6

st+7
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Deep Reinforcement Learning (1)
Deep Q Learning (DQN) for Atari Games

I End-to-end learning of values Q(s, a) from raw pixels
I Input state s is stack of raw pixels from last 4 frames
I Output is Q(s, a) for 18 joystick/button positions
I Hidden layers are the combination of CONV, FC, ReLU
I Stabilization techniques:

F Experience replay.
F Delayed target network.

Other tricks:
I Double Deep Q Learning (DDQN)
I Dueling network
I Prioritized replay

Tuyen P. Le (AI Lab) Deep Hierarchical RL Algorithms in POMDPs Ph.D. Dissertation Defense 25 / 61



Deep Reinforcement Learning (2)

Limitations of DQN and its derivations:

I Only learning from a limited number
of past states (last 4 frames)

I Cannot deal with POMDP domains

Deep Recurrent Q-Network(DRQN) [6]:

I A combination of a Long Short Term
Memory (LSTM) and a DQN

I Better handles the loss of information
(POMDP)

Other tricks combining with DRQN [6]:
I Updating DRQN techniques: Bootstrapped Sequential Updates vs

Bootstrapped Random Updates
I Ignore first observations in a sequence of transitions when updating the

Q value function
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Deep Reinforcement Learning (3)

hDQN framework [3]
I Two levels of controllers: meta controller

and controller
I The meta controller produces a subgoal.
I The controller performs primitive actions

to obtain the subgoal.
I The set of subgoals is predefined and fixed.
I The meta controller and the controller are

built from DQN networks
I Extrinsic is reward of the meta controller

and intrinsic is reward of the controller
I Only deal with fully observable domains

Others:
I Option Critic framework [1] and Feudral framework [2]
I Discovering subgoals [4]
I Adaptively finding a number of options [5]
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Proposed Methodologies
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hDRQN: Key Terminologies (1)

Subdomain (ξ)

A domain = multiple subdomains.

A subdomain ⇔ an option ξ.

E.g. Domain: Montezuma’s Revenge.
Subdomains: move to the left door, move to
the key, . . .

Subgoal (g)

Each subdomain has a subgoal g ∈ Ω

E.g. White rectangles (left image) Figure: Montezuma’s Revenge

Observation (o)

A partial of the environment (o ∈ Ω) which the agent can observe

E.g. The pixels around the agent (right image)
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hDRQN: Key Terminologies (2)

Meta-controller (META)

Equivalent to a “ policy over subgoals” that
receives the current observation ot and
determines the new subgoal gt

E.g. In Montezuma’s Revenge, META
is used to select new subgoal.

Figure: Montezuma’s Revenge

Extrinsic Reward (r ex)

Use to evaluate the goodness of META.

E.g. In Montezuma’s Revenge, r ex = 1 if agent obtains the key or
opens the doors, otherwise 0
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hDRQN: Key Terminologies (3)

Sub-controller (SUB)

Equivalent to the option’s policy, which
directly interacts with the environment by
performing action at

E.g. In Montezuma’s Revenge, SUB
controls the agent to move between
subgoals.

Figure: Montezuma’s Revenge

Intrinsic Reward (r in)

Use to evaluate the goodness of SUB.

E.g. In Montezuma’s Revenge, r in = 1 if agent obtains the subgoal,
otherwise 0
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hDRQN: Framework 1

SUB
CONTROLLER

ENVIRONMENT

AGENT

EXTRINSIC 
REWARD

ACTION OBSERVATION

META
CONTROLLER

CRITIC

SUB-GOAL

ACTION

INTRINSIC 
REWARD

h
S

h
M

hDRQNv1:
I Inspired by hDQN framework [3]
I Build on two deep recurrent neural policies.
I Input is a single frame (hDQN uses 4 frames)

META
CONTROLLER

SUB
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hDRQN: Framework 1 (Extended)
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INTRINSIC 

ACTION 

META:

Input: Observation o

Feature extraction: 4 CONV
layers and ReLU layers.

LSTM is integrated in front
of the features.

The output of LSTM is put
into Dueling network ([7])

Output: Q subgoal values
QM(o, g)

SUB:

Input: Observation o and
current subgoal (g)

Other part: same as META

Output: Q action values
QS({o, g}, a)
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hDRQN: Framework 2
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hDRQNv2
I An improved version of hDRQNv1
I Input of META is the internal states of LSTM

layer in SUB

META
CONTROLLER

SUB
CONTROLLER

...

( ,g| )QM hMt θ
M

gt

hS
t−1

ot

({ , },a| )QS ot gt θ
S

at

ot+1

({ , },a| )QS ot+1 gt θ
S

at+1

ot+k

({ , },a| )QS ot+k gt θ
S

at+k

............

META
CONTROLLER

( ,g| )QM hM
t+k

θ
M

gt+k

...

SUB
CONTROLLER

SUB
CONTROLLERhSt hS

t+1 hS
t+k

hMt hM
t+k

Tuyen P. Le (AI Lab) Deep Hierarchical RL Algorithms in POMDPs Ph.D. Dissertation Defense 34 / 61



hDRQN: Framework 2 (Extended)
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fully connected layers and
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framework 1
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hDRQN: Q values

META Q subgoal values:

hMt ,Q
M(ot , gt) = f M(ΦM , hMt−1)

SUB Q action values:

hSt ,Q
S({ot , gt}, at) = f S(ΦS , hSt−1)

Where:
I f M and f S are the recurrent networks of the META and SUB.
I hMt and hSt are internal states constructed by recurrent networks.
I ΦM and ΦS are the features of META and SUB.

ΦM =

{
f extract(ot) framework 1

f extract(hS) framework 2

ΦS = f extract(ot , gt)

I f extract is neural networks to extract features from input (E.g. CONV,
FC, ReLU, . . . )

Tuyen P. Le (AI Lab) Deep Hierarchical RL Algorithms in POMDPs Ph.D. Dissertation Defense 36 / 61



hDRQN: Learning META
Optimizing META by minimizing loss functions:

LM = E(o,g ,o′,g ′,r ex )∼MM

[
yMi −QM(o, g)

]
Where:

I yM
i is target values of META

yM
i = r ex + γQM′

(o′, argmaxg ′ QM(o′, g ′))

Minibatch Sampling Strategy: Bootstrapped Random Updates [6].
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hDRQN: Learning SUB
Optimizing SUB by minimizing loss functions:

LS = E(o,g ,a,r in)∼MS
[
ySi −QS({o, g}, a)

]
Where:

I yS
i are target values of SUB

yS
i = r in + γQS′

({o′, g}, argmaxa′ QS({o′, g}, a′))

Minibatch Sampling Strategy: Bootstrapped Random Updates [6].
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Figure: Learning SUB
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hDRQN: Sampling Strategy
Bootstrapped Random Updates [6] is compatible with recurrent
neural networks:

I Randomly selects a batch of episodes from the experience replay
I For each episode, we begin at a random transition and select a

sequence of n transitions
I For each controller, we have nM (META) and nS (SUB)
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hDRQN: Pseudo code
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Experiments and Results
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Experiments
Domains:

I Multiple goals in gridworld.
I Multiple goals in four-rooms.
I Montezuma’s Revenge.

Figure: Domains

Implementation details:
I Tensorflow.
I The inputs of META and SUB are a raw image of size 44× 44× 3
I Feature size is 256
I Input and output of LSTM have 256 values.
I Using ADAM to optimize the controller’s parameters
I Learning rate is 0.001
I Discount factor is 0.99

Tuyen P. Le (AI Lab) Deep Hierarchical RL Algorithms in POMDPs Ph.D. Dissertation Defense 42 / 61



Domain Description (1)

Multiple goal in Gridworld:
I Gridworld map of size 11 × 11.
I 4 types of objects: an agent (in black), two

obstacles (in red) and two goals (in blue and
green) or three goals (in blue, green and cyan)

I Objects are randomly located on the map
I Four actions: top, down, left or right.

Reward:
I Proper order: blue ⇒ green (two goals) or blue ⇒ green ⇒ cyan

(three goals)

I Classical reward: r =

{
1 for each reached goals in proper order

−1 hit the obstacle

I Intrinsic reward: r in =

{
1 obtain the goal

−1 hit the obstacle

I Extrinsic reward: r ex =

{
1 for each reached goal in proper order

0.01 otherwise
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Domain Description (1)

Multiple goal in Four-rooms:
I Four-rooms map of size 11 × 11.
I 4 types of objects: an agent (in black), two

obstacles (in red) and two goals (in blue and
green) or three goals (in blue, green and cyan)

I Objects are randomly located on the map
I Four actions: top, down, left or right.

Reward:
I Proper order: blue ⇒ green (two goals) or blue ⇒ green ⇒ cyan

(three goal)

I Classical reward: r =

{
1 reach goals in proper order

−1 hit the obstacle

I Intrinsic reward: r in =

{
1 obtain the goal

−1 hit the obstacle

I Extrinsic reward: r ex =

{
1 reach goals in order

0.01 otherwise
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Domain Description (1)

Montezuma’s Revenge:
I One of the hardest games in ATARI 2600
I DQN achieved a score of zero
I We use OpenAI Gym to simulate this domain
I To pass through the doors, first, the agent needs

to pick up the key.
I Agent observes an area of 70 × 70 pixels

Reward:
I Classical reward: The agent will earn 100 points after it obtains the key

and 300 after it reaches any door
I Intrinsic reward:

r in =

{
1 reach subgoal

0 otherwise

I Extrinsic reward:

r ex =

{
1 obtain key or open door

0 otherwise
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Experiments

Experiment 1: Evaluate on different values of nM and nS .
I Two goals in Grid World
I Effect of nS

I Effect of nM

Experiment 2: Evaluate on different levels of observation.
I Two goals in Grid World
I 3 × 3 observable agent
I 5 × 5 observable agent
I Fully observable agent

Experiment 3: Compare performance of hDRQNv1, hDRQNv2 with:
I Flat algorithms (DQN, DRQN)
I Hierarchical algorithm (hDQN)

Experiment 4: Montezuma’s Revenge
I Successful rate of reaching key
I Number of times to visit the subgoals
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Experiment 1: Effect of nS (1)

Report of hDRQNv1 with different nS (2,4,8,12)
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SUB needs a long
sequence of
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Experiment 1: Effect of nS(2)

Report of hDRQNv2 with different nS (2,4,8,12)
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(h) Intrinsic

0 25 50 75 100 125 150 175
Timesteps*100

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

R
ew
ar
d

sub-2

sub-4

sub-8

sub-12

(i) Extrinsic

0 25 50 75 100 125 150 175
Timesteps*100

20

25

30

35

40

45

50

S
te
ps

sub-2

sub-4

sub-8

sub-12

(j) Steps

Fixed nM = 1

Same behavious
as hDRQNv1

Tuyen P. Le (AI Lab) Deep Hierarchical RL Algorithms in POMDPs Ph.D. Dissertation Defense 48 / 61



Experiment 1: Effect of nM

Report of hDRQNv1 and hDRQNv2 with different nM (1, 2)
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Experiment 2: Effect of different levels of
observation

Performance of the agent with a larger observation area is better than
the agents with smaller observing abilities

The performance of a 5 × 5 observable agent using hDRQNv2 seems
to converge faster than a fully observable agent
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Experiment 3: Performance Comparison (1)

Multiple goals in gridworld
I The hDRQN algorithms outperforms the other algorithms
I hDRQNv2 has the best performance
I The hDQN algorithm has poor performance in POMDP domains
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Experiment 3: Performance Comparison (2)

Multiple goals in four-rooms
I Same behavious as in Gridworld
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Montezuma’s Revenge (1)
DQN reported a score of zero
DRQN also achieved a score of zero because of the highly hierarchical
complexity of the domain
hDQN can achieve a high score on this domain
The hDRQNv2 algorithm shows a better performance than hDRQNv1
⇒ Difference in the architecture of two frameworks has affected their
performance
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Experiment 4: Montezuma’s Revenge (2)
The agent using the hDRQNv2 algorithm almost picks up the “key”
at the end of the learning process
hDRQNv2 tends to explore more often for subgoals that are on the
way to reaching the “key” (E.g. top-right-ladder,
bottom-right-ladder, and bottom-left-ladder)
Exploring less often for other subgoals such as the left door and right
door
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Demo
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https://youtu.be/r2wQiOc6euE


Conclusions and Future
Works
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Conclusions

Implemented: new hierarchical deep reinforcement learning
algorithms (hDRQNs)

I For hierarchical tasks
I For both MDP and POMDP tasks
I Takes advantage of deep neural networks (DNN, CNN, LSTM)

Proposed: a new way to integrate LSTM into the learning framework,
which allows to learning data efficiently and better convergence.

Employed: several advanced methods in deep reinforcement learning:
I Double Q Learning
I Deep Recurrent Q Network
I Dueling Q Network
I Bootstrapped Random Updates

Tuyen P. Le (AI Lab) Deep Hierarchical RL Algorithms in POMDPs Ph.D. Dissertation Defense 57 / 61



Future works
Improved: our framework by tackling those problems:

I Our framework is hard to scale for domains with more than two levels
of hierarchy

I Discovering a set of subgoals in POMDP is still a difficult problem.

Considered: to apply hDRQN to multi-agent systems where the
environment is partially observable and the task is hierarchical
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routers 

communication 
range 

(u) Multiple taxi
co-operate to pick
up and take off
passengers

(v) Half Field Offense (A
team of robots co-operates
to score under the defense
of another team)

(w) Multiple robots do a
hierarchical tasks in a fac-
tory

Figure: Some hierarchical multi-agent domains
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Thank You!
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